Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imaging technology could unlock mysteries of a childhood disease

This microscope image shows a cell infected with RSV. The RNA tagged by the probe is shown in red, while the nucleoprotein is green.

Credit: Image courtesy of Eric Alonas and Philip Santangelo
This microscope image shows a cell infected with RSV. The RNA tagged by the probe is shown in red, while the nucleoprotein is green.

Credit: Image courtesy of Eric Alonas and Philip Santangelo

Abstract:
By the time they're two, most children have had respiratory syncytial virus (RSV) and suffered symptoms no worse than a bad cold. But for some children, especially premature babies and those with underlying health conditions, RSV can lead to pneumonia and bronchitis - which can require hospitalization and have long-term consequences.

Imaging technology could unlock mysteries of a childhood disease

Atlanta, GA | Posted on December 30th, 2013

A new technique for studying the structure of the RSV virion and the activity of RSV in living cells could help researchers unlock the secrets of the virus, including how it enters cells, how it replicates, how many genomes it inserts into its hosts - and perhaps why certain lung cells escape the infection relatively unscathed. That could provide scientists information they need to develop new antiviral drugs and perhaps even a vaccine to prevent severe RSV infections.

"We want to develop tools that would allow us to get at how the virus really works," said Philip Santangelo, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "We really need to be able to follow the infection in a single living cell without affecting how the virus infects its hosts, and this technology should allow us to do that."

The research was supported by the National Institutes of Health's National Institute of General Medical Sciences and published online ahead of print in the journal ACS Nano on December 30, 2013. While RSV will be the first target for the work, the researchers believe the imaging technique they developed could be used to study other RNA viruses, including influenza and Ebola.

"We've shown that we can tag the genome using our probes," explained Santangelo. "What we've learned from this is that the genome does get incorporated into the virion, and that the virus particles created are infectious. We were able to characterize some aspects of the virus particle itself at super-resolution, down to 20 nanometers, using direct stochastic optical reconstruction microscopy (dSTORM) imaging."

RSV can be difficult to study. For one thing, the infectious particle can take different forms, ranging from 10-micron filaments to ordinary spheres. The virus can insert more than one genome into the host cells and the RNA orientation and structure are disordered, which makes it difficult to characterize.

The research team, which included scientists from Vanderbilt University and Emory University, used a probe technology that quickly attaches to RNA within cells. The probe uses multiple fluorophores to indicate the presence of the viral RNA, allowing the researchers to see where it goes in host cells - and to watch as infectious particles leave the cells to spread the infection.

"Being able to see the genome and the progeny RNA that comes from the genome with the probes we use really give us much more insight into the replication cycle," Santangelo said. "This gives us much more information about what the virus is really doing. If we can visualize the entry, assembly and replication of the virus, that would allow us to decide what to go after to fight the virus."

The research depended on a new method for labelling RNA viruses using multiply-labeled tetravalent RNA imaging probes (MTRIPS). The probes consist of a chimeric combination of DNA and RNA oligonucleotide labeled internally with fluorophores tetravelently complexed to neutravidin. The chimeric combination was used to help the probes evade cellular defenses.

"There are lots of sensors in the cell that look for foreign RNA and foreign DNA, but to the cell, this probe doesn't look like anything," Santangelo explained. "The cell doesn't see the nucleic acid as foreign."

Introduced into cells, the probes quickly diffuse through a cell infected with RSV and bind to the virus's RNA. Though binding tightly, the probe doesn't affect the normal activities of the virus and allows researchers to follow the activity for days using standard microscopy techniques. The MTRIPS can be used to complement other probe technology, such as GFP and gold nanoparticles.

Work done by graduate student Eric Alonas to concentrate the virus was essential to the project, Santangelo said. The concentration had to be done without adversely affecting the infectivity of the virus, which would have impacted its ability to enter host cells.

"It took quite a bit of work to get the right techniques to concentrate the RSV," he said. "Now we can make lots of infectious virus that's labelled and can be stored so we can use it when we want to."

To study the infection's progress in individual cells, the researchers faced another challenge: living cells move around, and following them complicates the research. To address that movement, the laboratory of Thomas Barker - also in the Coulter Department - used micro-patterned fibronectin on glass to create 50-micron "islands" that contained the cells during the study.

Among the mysteries that the researchers would like to tackle is why certain lung cells are severely infected - while others appear to escape ill effects.

"If you look at a field of cells, you see huge differences from cell to cell, and that is something that's not understood at all," Santangelo said. "If we can figure out why some cells are exploding with virus while others are not, perhaps we can figure out a way to help the bad ones look more like the good ones."

In addition to those already mentioned, the research team included James Crowe, professor of pediatrics at Vanderbilt University; Elizabeth Wright, assistant professor in the School of Medicine at Emory University; Daryll Vanover, Jeenah Jung, Chiara Zurla, Jonathan Kirschman, Vincent Fiore, and Alison Douglas from the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University; Aaron Lifland and Manasa Gudheti from Vutara Inc. in Salt Lake City, and Hong Yi from the Emory University School of Medicine.

One of the challenges of studying RSV is maintaining its activity in the laboratory setting - a problem parents of young children don't share.

"When you handle this virus in the lab, you have to always be careful about it losing infectivity," Santangelo noted. "But if you take a room full of children who have not been infected and let one infected child into the room, 15 minutes later all of the children will be infected."

###

The research described here was supported by the National Institute of General Medical Sciences of the National Institutes of Health under contract R01 GM094198-01. Any conclusions or opinions expressed are those of the authors and do not necessarily represent the official views of the NIH.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: Eric Alonas, et al., "Combining Single RNA Sensitive Probes with Subdiffraction-Limited and Live-Cell Imaging Enables the Characterization of Virus Dynamics in Cells," (ACS Nano, December 2013):

Related News Press

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Imaging

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Renishaw reports on the use of Raman spectroscopy at CNRS Orléans to study materials under extreme conditions March 25th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Nanomedicine

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Discoveries

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tools

LAMDAMAP 2015 hosted by the University March 26th, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE