Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas

Abstract:
Mums and Dads beware, next year's Christmas wish list could be more out of reach (or sight…) than ever before. Invisibility, a long sought-after speculation in science fiction, has been turned into reality in the laboratory through the use of a theoretical technique called Transformation Optics.

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas

Abingdon, UK | Posted on December 19th, 2013

In his article, ‘Transformation optics and cloaking', Martin McCall, Professor of Theoretical Optics at Imperial College London, describes how the scientific principles leading to perfect invisibility, or cloaking, are now established.

Published in the academic journal Contemporary Physics, the research goes on to explain that ‘Part of the impetus for current invisibility research is undoubtedly its public appeal - every scientist's child, my own included, would like to own an invisibility cloak. However, apart from obvious military possibilities, invisibility research is showing signs of penetrating technology at apparently more mundane, but also more immediate, levels. Transporting and processing optical signals is the basis for global communication, and it is here that we may see the first commercial applications of cloaking technology'.

If Harry Potter-style invisibility cloaks are invented in time for next Christmas, they will surely be the ‘must have' gift for children and adults everywhere.

####

About Taylor & Francis
One of the world's largest academic publishers.

For more information, please click here

Contacts:
Matthew Peck

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Discoveries

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Materials/Metamaterials

Chemical cages: New technique advances synthetic biology February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Making sense of metallic glass February 9th, 2016

Graphene decharging and molecular shielding February 8th, 2016

Announcements

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Human Interest/Art

Rice to enter first international nanocar race: Five teams will participate in October 2016 event in France December 15th, 2015

Bionic liver micro-organs explain off-target toxicity of acetaminophen (Tylenol): Israeli-German partnership aims to replace animal experiments with advanced liver-on-chip devices August 17th, 2015

Omni Nano and Time Warner Cable Partner to Provide Nanotechnology Education to the Boys & Girls Clubs of Los Angeles: A $10,000 Donation to Benefit Youth of Los Angeles County's Boys & Girls Clubs August 4th, 2015

Kalam: versatility personified August 1st, 2015

Photonics/Optics/Lasers

Scientists take nanoparticle snapshots February 10th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic