Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Timing is everything in new nanotechnology for medicine, security and research

J. Paul Robinson
J. Paul Robinson

Abstract:


Tunable Lifetime Multiplexing Using Luminescent Nanocrystals

Yiqing Lu, Jiangbo Zhao, Run Zhang, Yujia Liu, Deming Liu, Ewa M. Goldys, Xusan Yang, Peng Xi, Anwar Sunna, Jie Lu, Yu Shi, Robert C. Leif, Yujing Huo, Jian Shen, James A. Piper, J. Paul Robinson and Dayong Jin

Optical multiplexing plays an important role in applications such as optical data storage, document security, molecular probes and bead assays for personalized medicine. Conventional fluorescent color coding is limited by spectral overlap and background interference, restricting the number of distinguishable identities. Here we show that tunable luminescent lifetimes (t) in the microsecond region can be exploited to code individual upconversion nanocrystals. In a single color band, one can generate more than 10 nanocrystal populations having distinct lifetimes ranging from 25.6 microseconds to 662.4 microseconds, and decode their well-separated lifetime identitites, which are independent from either colors or intensities. Such "t-Dots" potentially suit multi-channel bioimaging, high-throughput cytometry quantification, high-density data storage, as well as security codes to combat counterfeiting. This demonstration extends the optical multiplexing capability by adding the temporal dimension of luminescent signals, opening new opportunities in the life sciences, medicine and data security.

Timing is everything in new nanotechnology for medicine, security and research

West Lafayette, IN | Posted on December 16th, 2013

Researchers working to advance imaging useful to medicine and security are capitalizing on the same phenomenon behind the lingering "ghost" image that appeared on old television screens.

A team of researchers from Purdue University and Macquarie University in Sydney has created a way to control the length of time light from a luminescent nanocrystal lingers, adding a new dimension of time to color and brightness in optical detection technology.

Detection based on the lifetime of the light as well as its specific color, or wavelength, exponentially boosts the number of different combinations that can be created and used as unique signatures, or tags, for biomedical screens. Screens based on this new technology could identify thousands of different target molecules simultaneously, far surpassing the current limits of such screens to roughly 20 different molecules.

"These nanocrystals can form combination codes, like barcodes, to form a vast library of distinguishable molecular probes, which can be used for complex diagnostics," said Dayong Jin, the professor of photonics at Macquarie who led the research. "They could be used for screening tests that can more quickly and accurately identify the cause of infection, residue cancers at an early stage and locate the specific molecular targets for targeted drug therapies."

In addition, light emitted by the new nanocrystals far outlasts that which occurs naturally in biological systems, called autofluorescence. That difference in timing distinctly separates the signal from background noise, said J. Paul Robinson, the professor of cytomics in Purdue's College of Veterinary Medicine and professor in Purdue's Weldon School of Biomedical Engineering who helped lead the study over the last four years.

"The photons emitted by these nanocrystals last 1,000 times longer than the photons emitted by biological systems that cause background noise," said Robinson, who also is director of the Purdue Cytometry Laboratories. "The nanocrystal photons remain, just like the photons that created the 'ghost' images on old television screens that would linger after you turned off the set. A similar phenomenon is happening in these nanocrystals. We can capture this signal after the others have gone dark and obtain incredible resolution."

The team's work is detailed in a paper that will be published in the next issue of Nature Photonics and is currently available online.

Jin led the design and manufacture of the nanoparticles, which the researchers named t-Dots. Robinson led the concept development and biological testing of the detection technology.

Robinson's research focuses on flow cytometry, the analysis of cells that are contained in a liquid flowing past a laser beam. The research team built a time-resolved scanning cytometry system that was able to evaluate the lifetime of the light emitted as well as color and capture the t-Dot signals.

"Particles containing these t-Dots can be easily tailored to bind different antibodies," Robinson said. "A small and portable system could be created to probe for multiple pathogens at once in beverages or food."

The research team successfully layered the nanocrystals with a specific sequence of lifetimes within individual t-Dots to create unique signatures and successfully bound a protein to the t-Dots allowing them to seek out and bind to Giardia lamblia, he said.

Robinson next plans to refine designs of flow cytometry instruments that can read the t-Dot signatures and to explore the biomedical applications of new detection tools.

"Flow cytometry is a diagnostic tool that is used in a variety of applications from health care to homeland security," Robinson said. "It can analyze blood and urine to diagnose disease, or can analyze a sample taken from a surface or the air mixed with water to detect food-borne pathogens or chemical agents. With the t-Dot 'nano-tags,' we have the ability to screen for many targets at once, and only one small volume of sample will be needed to glean a vast amount of information in a very short amount of time."

The nanocrystals are tiny clusters of sodium, yttrium and fluoride ions with added trace amounts of ions of ytterbium and the blue-emitting rare earth element thulium. The ytterbium ion serves as a trigger to the reaction that controls the thulium fluorescence, and the researchers controlled the length of time this light is emitted by varying the distance between the two.

When a laser strikes a nanocrystal it triggers a reaction that leads to the emission of a photon at a visible wavelength, or a burst of visible light.

The t-Dots also could be used to create invisible and nearly impossible to forge marks on documents, items or currency as an anti-counterfeit measure, said Yiqing Lu, a senior Macquarie University Research Fellow in Photonics.

"By applying t-Dots to any surface, we can leave a secret message or mark on any product, which will only be revealed by a specially designed scanner," Lu said. "This has huge potential in confirming the authenticity of any product, from pharmaceutical drugs to medical courier supplies."

The research team at Macquarie is investigating this application as well as the ability to layer the t-Dots to create higher density data storage, he said.

In addition to Jin, Lu and Robinson, paper co-authors include Jiangbo Zhao, Run Zhang, Yujia Liu, Deming Liu, Ewa M. Goldys, Jie Lu, Anwar Sunna, Yu Shi and James A. Piper of Macquarie; Xusan Yang and Peng Xi of Peking University; Robert C. Leif of Newport Instruments; Yujing Huo of Tsinghua University; and Jian Shen of Olympus Australia.

An ARC Discovery Grant led by Piper and Jin at the Macquarie Advanced Cytometry Labs funded this work.

####

For more information, please click here

Contacts:
Writer:
Elizabeth Gardner
765-494-2081


Media contact
Macquarie University:
Amy Macintyre
02-9850-4051


Sources:
J. Paul Robinson
765-494-0757


Dayong Jin
+61 2 98504168


Yiqing Lu
+61 2 98504169

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Imaging

Eavesdropping on single molecules with light by replaying the chatter May 15th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

Argonne scientists fashion new class of X-ray detector: New perovskite-based detectors can sense X-rays over a broad energy range. April 24th, 2020

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Self-powered X-ray detector to revolutionize imaging for medicine, security and research: 2D perovskite thin films boost sensitivity 100-fold compared to conventional detectors, require no outside power source, and enable low-dose dental and medical images April 12th, 2020

Future quantum computers may pose threat to today's most-secure communications April 10th, 2020

New European Project to Fast-Track Adoption Of Cyber-Physical Systems (CPS) by SMEs: DigiFed to Demonstrate Potential of CPS Digital Technologies in Hardware Security, Human-Machine Interaction, and Autonomy for Small & Midsized Companies January 29th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Nanomedicine

2D sandwich sees molecules with clarity: Rice University engineers adapt 2D ‘sandwich’ for surface-enhanced Raman spectroscopy May 15th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Chemistry breakthrough could speed up drug development: Scientists have successfully developed a new technique to reliably grow crystals of organic soluble molecules from nanoscale droplets, unlocking the potential of accelerated new drug development May 8th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

Discoveries

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

A stitch in time: How a quantum physicist invented new code from old tricks: Error suppression opens pathway to universal quantum computing May 22nd, 2020

Announcements

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Tools

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

Argonne scientists fashion new class of X-ray detector: New perovskite-based detectors can sense X-rays over a broad energy range. April 24th, 2020

New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments April 17th, 2020

Two is better than one: Scientists fit two co-catalysts on one nanosheet for better water purification April 16th, 2020

Food/Agriculture/Supplements

Tiny particle, big payoff: Innovative virus research may save wheat and other crops May 15th, 2020

Fueling the World Sustainably: Synthesizing Ammonia using Less Energy April 26th, 2020

Hair surface engineering to be advanced by nano vehicles: This new researched technology can help both drug delivery and hair cosmetics industry April 10th, 2020

Carbon nanotubes forecast when vegetables spoil and buds bloom April 2nd, 2020

Photonics/Optics/Lasers

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

Light in the tunnel March 26th, 2020

Research partnerships

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Observation of intervalley transitions can boost valleytronic science and technology: UC Riverside-led research shows these transitions can emit light May 15th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project