Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 3-D Analysis of Thermo-elastic Behavior of Composite Plate Graded with Carbon Nanotubes

Abstract:
An Iranian researcher from Tarbiat Modarres University in association with another researcher from City University of Hong Kong studied three-dimensional thermo-elastic behavior of rectangular composite plates graded with carbon nanotubes.

3-D Analysis of Thermo-elastic Behavior of Composite Plate Graded with Carbon Nanotubes

Tehran, Iran | Posted on December 12th, 2013

Carrying out the study, they obtained and solved analytically differential equations related to temperature distribution and thermo-elastic in the plates.

In this research, the behavior of a composite plate graded with carbon nanotube (FG CNTRC), whose surfaces were subjected to thermal and mechanical loads, was investigated based on 3-D theory of elasticity by using Fourier series expansion through state space method. The researchers then obtained equations on thermo-elastic behavior of the structure by carrying out analytical studying on the free and static vibration of the structure subjected to mechanical load in three dimensions. Then, they proposed an analytical method to solve the equations, and they finally investigated the effect of various parameters such as volume ratio and the arrangement of carbon nanotubes on thermo-elastic behavior of the structure.

The accuracy and validity of the results obtained in the research were confirmed by comparing them with the results obtained from numerical results reported in articles.

Results of the research showed that the density of carbon nanotubes and their arrangement have significant effect on strength behavior and temperature distribution in the structure. The effect of volume ratio of carbon nanotube on thermo-elastic behavior across the length is much more than that in other directions. In addition, increasing the size in all dimensions increases all thermo-elastic behaviors as well.

The performance of the structure cannot be relied on at high temperature conditions without the use of the analysis. However, the mentioned structure can be designed to perform at desirable thermal conditions as a result of the research.

Results of the research have been published in details in Composite Structures, vol. 106, July 2013, pp. 873-881.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other not merely making contact April 21st, 2017

Nanotubes/Buckyballs/Fullerenes

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Discoveries

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Materials/Metamaterials

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

Announcements

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project