Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 3-D printing and custom manufacturing: from concept to classroom: Strategic investments from NSF help engineers revolutionize the manufacturing process

A middle-school student at the Next Generation School in Champaign, Ill., creates a 3-D object with a classroom 3-D printer. Students in grades K-12 can "print" 3-D objects from computer-generated sources right in the classroom using a rapid prototyping or 3-D lithography process. The process is based on a research project that was headed by Nicholas Fang, an assistant professor in the Mechanical Engineering Lab at the University of Illinois at Urbana-Champaign and developed at the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (NanoCEMMS) at the university. NanoCemms is a National Science Foundation Nanoscale Science and Engineering Center. 
The process uses UV sensitive monomer to do a form of 3-D printing called microstereo lithography. The students use a video projector with a UV output to create incredibly thin polymer layers (on the order of 400 nanometers) and build objects layer by layer. The activity demonstrates the basic challenges of nanoscale engineering. 
The 3-D printing process has already been used by hundreds of students in Illinois at all grade levels to turn mathematical models into objects that they can touch and feel. 
Nano-CEMMS provides a wide range of human resource development activities targeted toward increasing both the diversity of students involved with the center and educational opportunities at the K-12 and undergraduate levels, as well as providing graduate students with teaching experience in an emerging field. To learn more about the center, visit the Nano-CEMMS website. [Research supported by NSF grant CMMI 07-49028, awarded to John Rogers. Date of project shown in image: 2008-2010]

Credit: Joe Muskin, University of Illinois
A middle-school student at the Next Generation School in Champaign, Ill., creates a 3-D object with a classroom 3-D printer. Students in grades K-12 can "print" 3-D objects from computer-generated sources right in the classroom using a rapid prototyping or 3-D lithography process. The process is based on a research project that was headed by Nicholas Fang, an assistant professor in the Mechanical Engineering Lab at the University of Illinois at Urbana-Champaign and developed at the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (NanoCEMMS) at the university. NanoCemms is a National Science Foundation Nanoscale Science and Engineering Center.

The process uses UV sensitive monomer to do a form of 3-D printing called microstereo lithography. The students use a video projector with a UV output to create incredibly thin polymer layers (on the order of 400 nanometers) and build objects layer by layer. The activity demonstrates the basic challenges of nanoscale engineering.

The 3-D printing process has already been used by hundreds of students in Illinois at all grade levels to turn mathematical models into objects that they can touch and feel.

Nano-CEMMS provides a wide range of human resource development activities targeted toward increasing both the diversity of students involved with the center and educational opportunities at the K-12 and undergraduate levels, as well as providing graduate students with teaching experience in an emerging field. To learn more about the center, visit the Nano-CEMMS website. [Research supported by NSF grant CMMI 07-49028, awarded to John Rogers. Date of project shown in image: 2008-2010]

Credit: Joe Muskin, University of Illinois

Abstract:
Additive manufacturing, the technological innovation behind 3-D printing, has revolutionized the way we conceive of and build everything from electronic devices to jewelry to artificial organs.



Wind turbines the size of football fields, fuel efficient airplanes and safer vehicles are all examples of how advanced materials now make our daily lives a little better. Engineer Thomas Kurfess, who served as the Assistant Director for Advanced Manufacturing in the Office of Science and Technology Policy in the Executive Office of the President, explains.

Credit: NSF

3-D printing and custom manufacturing: from concept to classroom: Strategic investments from NSF help engineers revolutionize the manufacturing process

Arlington, VA | Posted on December 5th, 2013

It is not surprising that this field has enjoyed enormous economic returns, which are projected to grow over the coming decade. According to a recent industry report prepared by Wohlers Associates, 3-D printing contributed to more than $2.2 billion in global industry in 2012 and is poised to grow to more than $6 billion by 2017.

While both public and private investments contributed to the development of this technology, the National Science Foundation (NSF) provided early funding and continues to provide support for additive manufacturing, totaling approximately $200 million in 2005 adjusted dollars from more than 600 grants awarded from 1986-2012.

Although a wide range of programs across NSF have supported this endeavor, greater than two-thirds of the awards and more than half of the agency's total financial support for additive manufacturing was provided by NSF's Directorate for Engineering, which promotes fundamental and transformative engineering research and education through a broad range of programs and funding mechanisms.

"Additive manufacturing is a great example of how early NSF support for high-risk research can ultimately lead to large-scale changes in a major industry," says Steve McKnight, director of the Engineering Directorate's division of Civil, Mechanical, and Manufacturing Innovation (CMMI).

What is additive manufacturing?

Compared to traditional manufacturing techniques, in which objects are carved out of a larger block of material or cast in molds and dies, additive manufacturing builds objects, layer by layer, according to precise design specifications.

Because there are no dies or molds to be cast, design changes can be made more quickly and at a lower cost than ever before, increasing the level of customization that individuals and businesses can achieve "in house."

"Additive manufacturing technologies have changed the way we think about the manufacturing process," says NSF Assistant Director for Engineering Pramod Khargonekar. "It has reduced the time, cost, and equipment and infrastructure needs that once prevented individuals and small businesses from creating truly customized items, and accelerated the speed at which new products can be brought to market."

Recognizing potential in risky ideas

The Engineering Directorate's Strategic Manufacturing (STRATMAN) Initiative, led by CMMI in the late 1980s and early 1990s, proved pivotal in establishing the foundational technologies of additive manufacturing.

Five awards, totaling nearly $3.5 million in 2005 dollars, were made under this initiative to additive manufacturing-related research projects. Two of the four patents identified as foundational for the field of additive manufacturing were associated with STRATMAN-funded projects.

"The STRATMAN came at an incredibly important time," says University of Texas at Austin mechanical engineer Joseph Beaman. "We had some of the IP [intellectual property] there, but we needed a way to get the basic engineering done to show that we could really make it work."

Beaman and then UT graduate student Carl Deckard were the first to demonstrate and commercialize a process known as selective laser sintering, in which a high powered laser is used to fuse small particles into precise 3-D shapes.

"The purpose of the STRATMAN Initiative was to provide critical early funding to radically new ideas with the potential to impact future manufacturing technology," says Bruce Kramer, the CMMI program officer who made the original award to Beaman. "The research that Joe and Carl did with the STRATMAN hit a home run by laying the foundation for one of the key additive manufacturing technologies in use today."

Setting goals for a fledgling field

In addition to contributing to transformative fundamental research, the Engineering Directorate has supported a number of workshops and conferences designed to establish roadmaps and benchmarks for the field as it evolves.

Together with support from agencies including the Department of Energy, Defense Advanced Research Projects Agency, and the Office of Naval Research (ONR), the Engineering Directorate has sponsored workshops on rapid prototyping, additive and subtractive manufacturing and has consistently provided support for student travel to additive manufacturing conferences.

A 2009 workshop sponsored by NSF and ONR intended to identify the future of freeform processing is widely recognized as having been critical in defining future research directions in the field.

Transitioning research to the marketplace

Initial investments by the Engineering Directorate's Small Business Innovation Research (SBIR) program also were made to two key early firms in the additive manufacturing field including: DTM, acquired by 3D systems and founded by Carl Deckard, to develop the selective laser sintering process and Helisys, formerly Hydronetics and founded by Michael Feygin, to commercialize the sheet lamination process.

"The SBIR program helps scientists, engineers and entrepreneurs at early-stage start-ups mitigate risks, develop the technology into a marketable and scalable product and be better positioned in the marketplace," says Grace Wang, director of the Engineering Directorate's Industrial Innovation and Partnerships division.

While neither firm exists today, their contributions live on in the form of the universal industry standards they helped establish.

Preparing the next-generation workforce

Perhaps one of the greatest impacts additive manufacturing has had is in the realm of education and outreach. With the advent of desktop 3-D printers, students can experience the challenges and opportunities of manufacturing first-hand. The NSF-funded RapidTech Center at the University of California, Irvine, brings additive manufacturing to the classroom, engaging UCI students and students from a number of community college partners in the manufacturing process. Educational programs like RapidTech enhance engineering curriculum and boost interest in engineering as a profession.

"The RapidTech Center has increased the number of students who transfer into UCI Engineering programs and improved current engineering student's performance," says Celeste Carter, a program director in NSF's Directorate for Education and Human Resources. "Programs like this are, and will continue to be, incredibly important in preparing the future engineering workforce."

Looking to the future

As part of the president's plan to catalyze manufacturing innovation, the National Additive Manufacturing Innovation Institute, recently rebranded as "America Makes," was launched in August 2012.

The institute, which was convened on the recommendation of experts from NSF, the Department of Energy, the Department of Defense, National Aeronautics and Space Administration, and the National Institute of Standards and Technology, represents a partnership that includes manufacturing firms, government agencies, universities, community colleges and non-profit organizations. The goal of the institute is to accelerate additive manufacturing innovation by bridging the gap between basic research and scalable technologies.

In addition to contributing oversight and management to the America Makes initiative, NSF has invested in programs designed to facilitate collaboration and engage NSF-sponsored researchers and educational programs in the institute's activities.

"We are only beginning to see what is now possible because of additive manufacturing," Khargonekar says. "The Engineering Directorate is proud to have been among the many public and private organizations to provide early and continued research support leading to this significant and impactful innovation."

-- Valerie Thompson, AAAS Science and Technology Policy Fellow at NSF

####

For more information, please click here

Contacts:
Sarah Bates
NSF
(703) 292-7738

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information, see the 2013 report, The Role of the National Science Foundation in the Origin and Evolution of Additive Manufacturing in the United States, funded by NSF and prepared by the Science and Technology Policy Institute:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

3D & 4D printing/Additive-manufacturing

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023

3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project