Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Stanford engineers show how to optimize carbon nanotube arrays for use in hot spots

A stylized rendition of single walled carbon nanotubes that are just one atom thick in diameter. The red zones show where the attraction caused by van der Waals forces has bent or "zipped" two adjacent CNTs together.
A stylized rendition of single walled carbon nanotubes that are just one atom thick in diameter. The red zones show where the attraction caused by van der Waals forces has bent or "zipped" two adjacent CNTs together.

Abstract:
Experimental evidence and computer simulations suggest how to grow structures with the best trade offs between three desired characteristics: strength, flexibility and the ability to dissipate heat.

Stanford engineers show how to optimize carbon nanotube arrays for use in hot spots

Stanford, CA | Posted on December 2nd, 2013

When engineers design devices, they must often join together two materials that expand and contract at different rates as temperatures change. Such thermal differences can cause problems if, for instance, a semiconductor chip is plugged into a socket that can't expand and contract rapidly enough to maintain an unbroken contact over time.

The potential for failure at such critical junctures has intensified as devices have shrunk to the nano scale, bringing subtle forces into play that tug at atoms and molecules, causing strains that are difficult to observe, much less avoid.

Writing in the Proceedings of the National Academy (PNAS), Stanford engineers report on how to create carbon nanotube structures that remain strong and supple at these critical interfaces where thermal stress is intrinsic to the design.

"Think about the heat sink for a microprocessor, " said senior PNAS author Kenneth Goodson, Professor and Bosch Chair of Mechanical Engineering at Stanford. "It is exposed to high heat fluxes for long periods of time, and repeated instances of heating and cooling."

At present materials like solder and gels are used at such junctions. But as electronics continue to shrink, more electrical power gets pushed through smaller circuits, putting materials under ever increasing thermal stress.

"Solder has a high thermal conductivity, but it's stiff," Goodson said, explaining why his lab continues to experiment with vertically-aligned carbon nanotubes. Just before this PNAS contribution, his team described the favorable thermal properties of nanotubes in an article for Reviews of Modern Physics (Vol. 85, pp. 1296-1327).

Nanotubes are infinitesimally thin strands of carbon atoms that have the potential to be efficient at conducting heat. They are also strong for their size, and can be flexible depending on how they are fabricated.

The Stanford PNAS paper was based on experiments and simulations designed to reveal how to create carbon nanotube (CNT) structures with the optimal blend of all three characteristics - strength, flexibility, and heat conductivity - that are required in critical junctures where thermal stress is a fact of life.

The Stanford paper represents about five years of teamwork centered in the Stanford Mechanical Engineering Department including experiments led by first author Yoonjin Won, who was then a doctoral student in Mechanical Engineering.

She used a variety of existing techniques to assemble CNTs with different structural characteristics, and then measured the flexibility (also called modulus) and thermal conductivity of each structure to look for the optimal structure.

Left to nature, the carbon atoms that form CNTs will create structures that - if we could see them -- resemble a bowl of spaghetti.

But Won worked with collaborators at the University of Tokyo to create CNTs that grew up relatively straight, like grasses. Some degree of entanglement still occurred. Precise control of CNT growth remains beyond the reach of science.

Nevertheless, Won's experiments showed that longer CNTs, grown less densely together, seemed to have the best combination of flexibility and strength for use in electronics and other industrial applications where thermal stress is expected.

To some degree her findings represent a tradeoff. Shorter and denser CNT structures are stronger and more efficient at dissipating heat. But they are also more entangled and stiffer. Won's experimental results showed that as CNT strands grew longer, they tended to grow straighter and were less tangled. This increased the flexibility of the structure, albeit with some acceptable losses in the other two parameters.

Because the ultimate goal of this work is to reveal how to optimize CNT structures for use as thermal transfer materials, the Stanford team built a computer simulation of the CNT assembly process with an eye toward understanding how the CNTs became bent and entangled despite efforts to grow them straight.

Work on the simulation was led by Wei Cai, an Associate Professor of Mechanical Engineering at Stanford, who holds a courtesy appointment in Materials Science and Engineering. The Stanford scientists wanted to understand the manner in which van der Waals forces influence the growth of CNTs.

These forces are named for the Dutch physicist who first described the weak attractions that exist between molecules - attractions that could not be explained by other known forces such as the chemical bonds that result when atoms share electrons.

Cai said that whereas van der Waals forces may not be critical in other types of structures, carbon nanotubes are so thin -- a nanometer thick in diameter -- that these minute forces could fundamentally affect them.

That is in fact what the simulation showed. Imagine a CNT attempting to grow straight, only to be bent to one side by the van der Waal attraction of another CNT crossing near its top, and perhaps bent to the other side by a different CNT that nears its bottom.

Taken together, the experimental results and computer simulation reinforce the findings that longer, less entangled CNTs would offer the best mixture of the desired characteristics strength, flexibility and heat transfer. But due to the van der Waals forces operating on these atom-thick carbon tubes, engineers are going to have to accept some bending and irregularity as they strive to create workable, though less than ideal, structures for dissipating heat.

"When you hear about nanotechnology it's usually about the superlatives, the strongest this, the thinnest that," Goodson said. "But we think is the answers will lie in finding unique combinations of properties, in this case something that's strong and conducts heat like a metal, but can flex and bend as well."

Other contributors include Yuan Gao, Matthew Panzer and Professor Thomas Kenny, who did their work at Stanford University; Rong Xiang, with the School of Physics and Engineering at Sun Yat-sen University in China; and Shigeo Maruyama with the Department of Mechanical Engineering at the University of Tokyo.

The work was sponsored by the Office of Naval Research, the National Science Foundation, the Semiconductor Research Corporation and the Air Force Office of Scientific Research.

Tom Abate is the Associate Director of Communications at Stanford Engineering

####

For more information, please click here

Contacts:
Tom Abate
Stanford Engineering
650-736-2245

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Chip Technology

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

AI Technology (AIT) Introduces Novel High Temperature Large Area Underfill with Proven Stress Absorption August 15th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Nanotubes/Buckyballs

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

SouthWest NanoTechnologies Inc. Announces $2.7 Million in New Financing to Fund Growth, Plant Expansion and Technical Personnel August 11th, 2014

Discoveries

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Materials/Metamaterials

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Military

New material could enhance fast and accurate DNA sequencing August 13th, 2014

On the frontiers of cyborg science August 10th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Research partnerships

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE