Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanorobot for transporting drugs in the body: The first step has been taken towards developing a nanorobot that – in the long run – will enable the targeted transport of medications in the body

Figuren viser et nano-bur, hvor otte unikke DNA-molekyler bliver blandet sammen. Nano-buret har fire funktionelle elementer, som forandrer sig ved ændringer i omgivelsernes temperatur. Disse forandringer enten lukker (1A) eller åbner (1B) nano-buret. Ved at udnytte temperaturforandringer i omgivelserne har forskerne dermed fanget et aktivt enzym kaldet horseradish peroxidase (HRP) inde i nano-buret (1C)Figur: Sissel Juul
Figuren viser et nano-bur, hvor otte unikke DNA-molekyler bliver blandet sammen. Nano-buret har fire funktionelle elementer, som forandrer sig ved ændringer i omgivelsernes temperatur. Disse forandringer enten lukker (1A) eller åbner (1B) nano-buret. Ved at udnytte temperaturforandringer i omgivelserne har forskerne dermed fanget et aktivt enzym kaldet horseradish peroxidase (HRP) inde i nano-buret (1C)

Figur: Sissel Juul

Abstract:
A nanorobot is a popular term for molecules with a unique property that enables them to be programmed to carry out a specific task. In collaboration with colleagues in Italy and the USA, researchers at Aarhus University have now taken a major step towards building the first nanorobot of DNA molecules that can encapsulate and release active biomolecules.

Nanorobot for transporting drugs in the body: The first step has been taken towards developing a nanorobot that – in the long run – will enable the targeted transport of medications in the body

Aarhus, Denmark | Posted on December 2nd, 2013

In time, the nanorobot (also called a DNA nanocage) will no doubt be used to transport medications around in the body and thereby have a targeted effect on diseased cells.

Design using the body's natural molecules

Using DNA self-assembly, the researchers designed eight unique DNA molecules from the body's own natural molecules. When these molecules are mixed together, they spontaneously aggregate in a usable form - the nanocage (see figure).

The nanocage has four functional elements that transform themselves in response to changes in the surrounding temperature. These transformations either close (figure 1A) or open (figure 1B) the nanocage. By exploiting the temperature changes in the surroundings, the researchers trapped an active enzyme called horseradish peroxidase (HRP) in the nanocage (figure 1C). They used HRP as a model because its activity is easy to trace.

This is possible because the nanocage's outer lattice has apertures with a smaller diameter than the central spherical cavity. This structure makes it possible to encapsulate enzymes or other molecules that are larger than the apertures in the lattice, but smaller than the central cavity.

The researchers have just published these results in the renowned journal ACS Nano. Here the researchers show how they can utilise temperature changes to open the nanocage and allow HRP to be encapsulated before it closes again.

They also show that HRP retains its enzyme activity inside the nanocage and converts substrate molecules that are small enough to penetrate the nanocage to products inside.

The encapsulation of HRP in the nanocage is reversible, in such a way that the nanocage is capable of releasing the HRP once more in reaction to temperature changes. The researchers also show that the DNA nanocage - with its enzyme load - can be taken up by cells in culture.

Looking towards the future, the concept behind this nanocage is expected to be used for drug delivery, i.e. as a means of transport for medicine that can target diseased cells in the body in order to achieve a more rapid and more beneficial effect.

The research was carried out at the Department of Molecular Biology and Genetics and the Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, in collaboration with researchers from Duke University (USA) and the University of Rome (Italy).

####

For more information, please click here

Contacts:
Birgitta R. Knudsen

(45) 60-20-26-73

Postdoctoral Fellow Sissel Juul
Department of Biomedical Engineering
Duke University
Durham, North Carolina, USA

mobile: +1 919 323 2291

Copyright © Aarhus University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the scientific article in ACS Nano:

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Molecular Machines

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Research partnerships

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE