Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotubes can solder themselves, markedly improving device performance

Electrical and computer engineering professor Joseph Lyding led the research team that developed a way to heal gaps in wires too small for even the world's tiniest soldering iron. 
Photo by L. Brian Stauffer
Electrical and computer engineering professor Joseph Lyding led the research team that developed a way to heal gaps in wires too small for even the world's tiniest soldering iron.

Photo by L. Brian Stauffer

Abstract:
University of Illinois researchers have developed a way to heal gaps in wires too small for even the world's tiniest soldering iron.

Nanotubes can solder themselves, markedly improving device performance

Champaign, IL | Posted on November 25th, 2013

Led by electrical and computer engineering professor Joseph Lyding and graduate student Jae Won Do, the Illinois team published its results in the journal Nano Letters.

Carbon nanotubes are like tiny hollow wires of carbon just 1 atom thick - similar to graphene but cylindrical. Researchers have been exploring using them as transistors instead of traditional silicon, because carbon nanotubes are easier to transport onto alternate substrates, such as thin sheets of plastic, for low-cost flexible electronics or flat-panel displays. (See video for demonstration of the process.)

Carbon nanotubes themselves are high-quality conductors, but creating single tubes suitable to serve as transistors is very difficult. Arrays of nanotubes are much easier to make, but the current has to hop through junctions from one nanotube to the next, slowing it down. In standard electrical wires, such junctions would be soldered, but how could the gaps be bridged on such a small scale?

"It occurred to me that these nanotube junctions will get hot when you pass current through them," said Lyding, "kind of like faulty wiring in a home can create hot spots. In our case, we use these hot spots to trigger a local chemical reaction that deposits metal that nano-solders the junctions."

Lyding's group teamed with Eric Pop, an adjunct professor of electrical and computer engineering, and John Rogers, Swanlund professor in materials science and engineering, experts on carbon nanotube synthesis and transfer, as well as chemistry professor Greg Girolami. Girolami is an expert in a process that uses gases to deposit metals on a surface, called chemical vapor deposition (CVD).

The nano-soldering process is simple and self-regulating. A carbon nanotube array is placed in a chamber pumped full of the metal-containing gas molecules. When a current passes through the transistor, the junctions heat because of resistance as electrons flow from one nanotube to the next. The molecules react to the heat, depositing the metal at the hot spots and effectively "soldering" the junctions. Then the resistance drops, as well as the temperature, so the reaction stops.

The nano-soldering takes only seconds and improves the device performance by an order of magnitude - almost to the level of devices made from single nanotubes, but much easier to manufacture on a large scale.

"It would be easy to insert the CVD process in existing process flows," Lyding said. "CVD technology is commercially available off-the-shelf. People can fabricate these transistors with the ability to turn them on so that this process can be done. Then when it's finished they can finish the wiring and connect them into the circuits. Ultimately it would be a low-cost procedure."

Now, the group is working to refine the process.

"We think we can make it even better," Lyding said. "This is the prelude, we hope, but it's actually quite significant."

The National Science Foundation and the Office of Naval Research supported this work. Lyding and Rogers also are affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Joe Lyding
217-333-8370

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Nanosoldering Carbon Nanotube Junctions by Local Chemical Vapor Deposition for Improved Device Performance,” is available online:

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Graphene/ Graphite

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Drum beats from a one atom thick graphite membrane June 15th, 2016

Discovery of gold nanocluster 'double' hints at other shape changing particles: New analysis approach brings two unique atomic structures into focus June 15th, 2016

Display technology/LEDs/SS Lighting/OLEDs

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Videos/Movies

'On-the-fly' 3-D print system prints what you design, as you design it June 1st, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Chip Technology

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic