Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Electrified Diamonds: Basel Physicists on the Trail of Quantum Information

Scanning tunneling microscopy image showing the surface structure of nanodiamonds.
Scanning tunneling microscopy image showing the surface structure of nanodiamonds.

Abstract:
With the help of tiny diamond crystals, physicists at the University of Basel have discovered new possibilities of quantum information: The scientists discovered at specific circumstances electric currents that made it possible to identify defects in the carbon lattice of single diamonds measuring only a few nanometers. The results have been published online in the magazine «Nano-Letters».

Electrified Diamonds: Basel Physicists on the Trail of Quantum Information

Basel, Switzerland | Posted on November 19th, 2013

The team from the University of Basel and the French German Research Institute St. Louis (ISL) investigated diamond crystals of the size of only five nanometers (five millionths millimeter) using scanning tunneling microscopy and atomic force microscopy. The physicists then identified the atomic structure of the surface and observed crystalline, hexagonal carbon facets as well as graphitic reconstructions. In doing so, they discovered extra currents at specific voltages when the crystals were illuminated by green light.

These extra currents are related to the presence of defects in the carbon lattice of diamonds, so called Nitrogen-vacancy centers (NV-centers) that are optically active. These centers are promising candidates for future applications in quantum information processing systems, spin-magnetometry sensors or single photon sources. Their identification in the range of less than ten nanometers would have been very difficult with conventional methods, which is why the scientists applied a combination of different methods.

«With this study, we are able to show that it is possible to prove, with high resolution, the presence of optical centers in single nanodiamonds», says Prof. Ernst Meyer of the Department of Physics at the University of Basel. In the future, NV-centers could be used in quantum computers that work much more efficiently than conventional computers.

Full bibliographic information

Rémy Pawlak, Thilo Glatzel, Vincent Pichot, Loïc Schmidlin, Shigeki Kawai, Sweetlana Fremy, Denis Spitzer and Ernst Meyer
Local Detection of Nitrogen-Vacancy Centers in a Nanodiamond Monolayer
Nano Lett. 2013 Oct 24, Epub ahead of print | DOI: 10.1021/nl402243s (2013)

####

For more information, please click here

Contacts:
Christoph Dieffenbacher
0041 (0)61 267 30 15


Prof. Dr. Ernst Meyer
Departement für Physik der Universität Basel
Tel. +41 61 267 37 24

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Imaging

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Memory Technology

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Quantum Computing

1980s aircraft helps quantum technology take flight October 20th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Tools

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Research partnerships

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE