Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Electrified Diamonds: Basel Physicists on the Trail of Quantum Information

Scanning tunneling microscopy image showing the surface structure of nanodiamonds.
Scanning tunneling microscopy image showing the surface structure of nanodiamonds.

Abstract:
With the help of tiny diamond crystals, physicists at the University of Basel have discovered new possibilities of quantum information: The scientists discovered at specific circumstances electric currents that made it possible to identify defects in the carbon lattice of single diamonds measuring only a few nanometers. The results have been published online in the magazine «Nano-Letters».

Electrified Diamonds: Basel Physicists on the Trail of Quantum Information

Basel, Switzerland | Posted on November 19th, 2013

The team from the University of Basel and the French German Research Institute St. Louis (ISL) investigated diamond crystals of the size of only five nanometers (five millionths millimeter) using scanning tunneling microscopy and atomic force microscopy. The physicists then identified the atomic structure of the surface and observed crystalline, hexagonal carbon facets as well as graphitic reconstructions. In doing so, they discovered extra currents at specific voltages when the crystals were illuminated by green light.

These extra currents are related to the presence of defects in the carbon lattice of diamonds, so called Nitrogen-vacancy centers (NV-centers) that are optically active. These centers are promising candidates for future applications in quantum information processing systems, spin-magnetometry sensors or single photon sources. Their identification in the range of less than ten nanometers would have been very difficult with conventional methods, which is why the scientists applied a combination of different methods.

«With this study, we are able to show that it is possible to prove, with high resolution, the presence of optical centers in single nanodiamonds», says Prof. Ernst Meyer of the Department of Physics at the University of Basel. In the future, NV-centers could be used in quantum computers that work much more efficiently than conventional computers.

Full bibliographic information

Rémy Pawlak, Thilo Glatzel, Vincent Pichot, Loïc Schmidlin, Shigeki Kawai, Sweetlana Fremy, Denis Spitzer and Ernst Meyer
Local Detection of Nitrogen-Vacancy Centers in a Nanodiamond Monolayer
Nano Lett. 2013 Oct 24, Epub ahead of print | DOI: 10.1021/nl402243s (2013)

####

For more information, please click here

Contacts:
Christoph Dieffenbacher
0041 (0)61 267 30 15


Prof. Dr. Ernst Meyer
Departement für Physik der Universität Basel
Tel. +41 61 267 37 24

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Imaging

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Memory Technology

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Quantum Computing

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Chiral quantum optics: A new research field with bright perspectives January 31st, 2017

Scientists unveil new form of matter: Time crystals: Physicists repeatedly tweaked a group of ions to create first example of a non-equilibrium material January 27th, 2017

Discoveries

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Announcements

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Tools

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Research partnerships

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

UCLA physicists map the atomic structure of an alloy: Researchers measured the coordinates of more than 23,000 atoms in a technologically important material February 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project