Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Kind of “X-Ray Vision” Reveals Objects’ Internal Nanoscale Structure, Chemistry

Abstract:
Nanomaterials made of particles with dimensions measured in billionths of a meter hold enormous promise for creating more efficient batteries, fuel cells, catalysts, and drug-delivery systems. Seeing how the nanostructured materials inside these devices evolve and interact as they operate is essential to gain insight into ways to optimize performance. But most studies have looked at idealized samples of isolated components, not as they function in operating devices.

New Kind of “X-Ray Vision” Reveals Objects’ Internal Nanoscale Structure, Chemistry

New York, NY | Posted on October 28th, 2013

Now a group of researchers, led by Columbia Engineering Professor Simon Billinge and the U.S. Department of Energy's Brookhaven National Laboratory, has combined with experts in France and the UK to develop a new kind of "x-ray vision"—a way to peer inside real-world devices to map the internal nanostructures and properties of the various components, and even monitor how properties evolve as the devices operate. Billinge, one of the paper's lead authors, a professor of materials science and of applied physics and applied mathematics (APAM) at the Engineering School,and a research scientist at Brookhaven, describes the novel dual imaging method in the September 30 issue of? Nature Communications. He explains how this new imaging method combines high-intensity x-rays for discerning nanoscale structures with cross-sectional "slices" of the device to pinpoint the precise location of the nanostructured components. It opens new opportunities for advances in a wide range of research disciplines from materials science to biomaterials, geology, environmental science, and health.

"If you think of a battery with an anode, next to a membrane, next to a solid electrolyte, next to another membrane, next to the cathode, and all this wrapped in a steel container, it's pretty opaque from the outside," said Billinge. "What we can do now, with this new dual-imaging method, is look inside the battery and extract the nanostructure from each of those parts of the battery separately, and we can do it without taking the battery apart, and we can also do it while the battery is operating, to follow the chemistry as the materials evolve."

"One of the main challenges was the computational effort of handling so much data," added Xiaohao Yang, a PhD candidate in APAM at the Engineering School and coauthor of the paper. "We had to develop powerful software tools to manipulate the floods of data coming from the experiment and to reveal the precise pictures of the nanoscale structure that we wanted."

Internal fingerprints

The x-rays used for this technique are not like the ones used to image a broken bone. They are exquisitely intense, small beams with very high energy produced by a synchrotron light source, a precision scientific instrument located at select research centers around the world, including Brookhaven Lab and the European Synchrotron Radiation Facility in Grenoble, France, where this particular study was done. The x-rays generate measurements of the distribution of distances between pairs of atoms in the material—known as atomic pair distribution functions, or PDFs—which reveal the nanoscale structure.

Larger scale cross-sectional images of "slices" of the material taken from multiple angles using computed tomography (CT)—just like what doctors use to check for brain injuries after a bad fall—give scientists the spatial information they need to make a 3D map of the device's material components and "place" the information about nanoscale structure on that map.

"Each method is powerful in its own right, but together they give us a whole new kind of picture," Billinge said. "For the first time we can separate the nanostructure signals from the different parts of a working device and see what the atoms are doing in each place, without dismantling the object."

Like the imaging methods that have had a huge impact in health care and the physiological and neurological sciences, this technique offers unprecedented access to the internal workings of materials at the nanoscale.

"It is like being able to see what is happening, and making measurements, inside any room deep in the center of the Empire State Building but looking at it from the observation deck of 30 Rockefeller Center—oh, and if the Empire State and Rockefeller buildings were really tiny," Billinge said.

Demonstrating the technique
To demonstrate the technique, the scientists made images of a complex phantom sample composed of a mixture of multiple amorphous and semi-crystalline materials. They were able to tell these distinct phases apart with ease.

Then they used the method to study the internal structure of a catalyst made of palladium nanoparticles on an aluminium oxide support that is widely used in the chemical industry.

"The efficiency of many industrial processes is dependent on the performance of catalysts deposited onto a structural support known as a catalytic body, so it's extremely pertinent to understand how they are prepared and operate in practice," Billinge said.

The technique clearly revealed a non-uniform distribution of particles, with larger particles on the surface and smaller ones on the inside of the material.

"It is not clear from this study whether the significant catalytic activity would originate from the larger and more numerous particles located at the periphery, or by the smaller ones in the interior," Billinge said. "But by using dynamic PDF-CT to monitor the catalyst as it performs, it is now possible to provide a more complete picture of the catalyst sample and the evolutionary processes by which it develops and operates to understand these relationships, and ultimately to guide improved catalyst design."

This research was performed while Billinge was on sabbatical from Columbia Engineering and Brookhaven, but will likely continue at the National Synchrotron Light Source II (NSLS-II) at Brookhaven, when it becomes operational in 2015.

"With modern synchrotron light sources, sub-micron x-ray beams are becoming more widely available, allowing for the possibility of PDF-CT imaging with resolution on nanometer length-scales in the near future," Billinge said.

This research was done in collaboration with scientists from the University of Manchester, UK; the Research Complex at Harwell, Didcot, Oxfordshire, UK; University College London; ESRF; and Utrecht University, The Netherlands. The work was funded by the U.S. Department of Energy's Office of Science and by the UK Engineering and Physical Sciences Research Council.

—by Brookhaven National Laboratory

####

For more information, please click here

Contacts:
Holly Evarts
Director of Strategic Communications & Media Relations
Columbia Engineering
212-854-3206

Copyright © Columbia Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Imaging

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

JPK reports on the use of AFM and advanced fluorescence microscopy at the University of Freiburg August 13th, 2014

Phasefocus reports on the use of their high-precision Lens Profiler for measuring contact lens thickness at the Brien Holden Vision Institute in Sydney, Australia August 13th, 2014

Laboratories

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Discoveries

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Materials/Metamaterials

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Announcements

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Tools

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

JPK reports on the use of AFM and advanced fluorescence microscopy at the University of Freiburg August 13th, 2014

Phasefocus reports on the use of their high-precision Lens Profiler for measuring contact lens thickness at the Brien Holden Vision Institute in Sydney, Australia August 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE