Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New biomimetic material to develop nanosensors

This pattern represents the logo of Moncloa Campus, a topographic image taken with an atomic force microscope of biomimetic polymeric material developed by electron beam lithography. Source: UPM.
This pattern represents the logo of Moncloa Campus, a topographic image taken with an atomic force microscope of biomimetic polymeric material developed by electron beam lithography.

Source: UPM.

Abstract:
The new features of this biomimetic material will allow us to develop multiple nanometer-sized chemical sensors (1 nanometer= 0.000001 mm) over the same substrate by electron beam lithography, as a result, multifunctional biochips of major versatility will be developed. The possibility to record at nanometric scale is an essential benefit facing traditional biomimetic materials since this new material developed by researchers at the Universidad Politécnica de Madrid (UPM) and the Universidad Complutense (UCM) within the framework of Moncloa campus provides commercial potential applications.

New biomimetic material to develop nanosensors

Madrid, Spain | Posted on October 3rd, 2013

This material is compound by a cross-linking linear polymer whose molecular structure is altered by the bombing with electrons. In this way, it is possible to use an electron beam of a few nanometers thick, as if it were an ultra fine point pencil, to write a pattern over a movie of this material adhered to a substrate. After the writing (lithography), the movie is submerged in a liquid developer able to dissolve the film area irradiated by the beam and to leave intact the non irradiated pattern over the substrate.

In addition, the material behaves as a molecularly imprinted polymer (MIP), that is, it is able to recognize a molecule or a specific compound after a printing process at molecular level. The MIPs are synthetic materials with similar functionality to certain biological molecules, such as antigens and antibodies, used as receptors to detect certain molecules, for that reason MIPs are considered as biomimetic materials. The main benefits of the MIPs over the biological receptors are higher resistance to chemicals and extreme weather, lower cost and the ability to create synthetic chemical receptors inexistent in nature.

To date, in order to develop sensors, the methods used to record films in MIPs are based on printing and photolithography techniques. The main drawback of the printing method is the possible contamination of film surfaces of MIP which are in contact with printing molds, whereas the photolithography technique is not suitable to create nanometrics reasons. The new material can be recorded at nanometric scale with no need of mold of mask.

Researchers at the UPM and the UCM have developed nanometrics patterns of this material over silicon substrates by using an electron beam and proving the functionality of the MIP. The material is able to recognize the Rhodamine 123, which is a fluorescent molecule of high sensitivity and selectivity over other rhodamines. The methodology used to develop this material can be applied to the synthesis of other materials susceptible to be recorded by beam of electrons and able to detect substance of interest in toxicology and biomedicine.

The development of nanometrics structures of sensor materials has a double purpose. Firstly, a higher interaction between the sensor and the environment where the analyte is detected, increasing the speed and sensitivity detection. Secondly, the slight size of the sensor structures allow us to integrate multiple elements in just one chip o substrate saving costs and increasing its reliability and functionality of trials.

The method of development of this material was protected by a patent

This project was funded by the former Ministry of Science and Innovation within the framework of Explora project whose main researcher was Carlos Angulo Barrios of the Institute of Optoelectronics Systems and Microtechnology (ISOM) of the UPM. The EXPLORA projects are oriented to promote scientific curiosity, searching for creative research proposals resulting in a deep reflection on a given problem.

####

For more information, please click here

Contacts:
Victoria Ferreiro

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Sensors

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Discoveries

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Materials/Metamaterials

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Tools

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Printing/Lithography/Inkjet/Inks

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic