Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New biomimetic material to develop nanosensors

This pattern represents the logo of Moncloa Campus, a topographic image taken with an atomic force microscope of biomimetic polymeric material developed by electron beam lithography. Source: UPM.
This pattern represents the logo of Moncloa Campus, a topographic image taken with an atomic force microscope of biomimetic polymeric material developed by electron beam lithography.

Source: UPM.

Abstract:
The new features of this biomimetic material will allow us to develop multiple nanometer-sized chemical sensors (1 nanometer= 0.000001 mm) over the same substrate by electron beam lithography, as a result, multifunctional biochips of major versatility will be developed. The possibility to record at nanometric scale is an essential benefit facing traditional biomimetic materials since this new material developed by researchers at the Universidad Politécnica de Madrid (UPM) and the Universidad Complutense (UCM) within the framework of Moncloa campus provides commercial potential applications.

New biomimetic material to develop nanosensors

Madrid, Spain | Posted on October 3rd, 2013

This material is compound by a cross-linking linear polymer whose molecular structure is altered by the bombing with electrons. In this way, it is possible to use an electron beam of a few nanometers thick, as if it were an ultra fine point pencil, to write a pattern over a movie of this material adhered to a substrate. After the writing (lithography), the movie is submerged in a liquid developer able to dissolve the film area irradiated by the beam and to leave intact the non irradiated pattern over the substrate.

In addition, the material behaves as a molecularly imprinted polymer (MIP), that is, it is able to recognize a molecule or a specific compound after a printing process at molecular level. The MIPs are synthetic materials with similar functionality to certain biological molecules, such as antigens and antibodies, used as receptors to detect certain molecules, for that reason MIPs are considered as biomimetic materials. The main benefits of the MIPs over the biological receptors are higher resistance to chemicals and extreme weather, lower cost and the ability to create synthetic chemical receptors inexistent in nature.

To date, in order to develop sensors, the methods used to record films in MIPs are based on printing and photolithography techniques. The main drawback of the printing method is the possible contamination of film surfaces of MIP which are in contact with printing molds, whereas the photolithography technique is not suitable to create nanometrics reasons. The new material can be recorded at nanometric scale with no need of mold of mask.

Researchers at the UPM and the UCM have developed nanometrics patterns of this material over silicon substrates by using an electron beam and proving the functionality of the MIP. The material is able to recognize the Rhodamine 123, which is a fluorescent molecule of high sensitivity and selectivity over other rhodamines. The methodology used to develop this material can be applied to the synthesis of other materials susceptible to be recorded by beam of electrons and able to detect substance of interest in toxicology and biomedicine.

The development of nanometrics structures of sensor materials has a double purpose. Firstly, a higher interaction between the sensor and the environment where the analyte is detected, increasing the speed and sensitivity detection. Secondly, the slight size of the sensor structures allow us to integrate multiple elements in just one chip o substrate saving costs and increasing its reliability and functionality of trials.

The method of development of this material was protected by a patent

This project was funded by the former Ministry of Science and Innovation within the framework of Explora project whose main researcher was Carlos Angulo Barrios of the Institute of Optoelectronics Systems and Microtechnology (ISOM) of the UPM. The EXPLORA projects are oriented to promote scientific curiosity, searching for creative research proposals resulting in a deep reflection on a given problem.

####

For more information, please click here

Contacts:
Victoria Ferreiro

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Sensors

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Discoveries

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Materials/Metamaterials

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Tools

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Patents/IP/Tech Transfer/Licensing

Researchers develop new way to manufacture nanofibers May 21st, 2015

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Printing/Lithography/Inkjet/Inks

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Printing 3-D graphene structures for tissue engineering: A new ink formulation allows for the 3-D printing of graphene structures May 19th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project