Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New biomimetic material to develop nanosensors

This pattern represents the logo of Moncloa Campus, a topographic image taken with an atomic force microscope of biomimetic polymeric material developed by electron beam lithography. Source: UPM.
This pattern represents the logo of Moncloa Campus, a topographic image taken with an atomic force microscope of biomimetic polymeric material developed by electron beam lithography.

Source: UPM.

Abstract:
The new features of this biomimetic material will allow us to develop multiple nanometer-sized chemical sensors (1 nanometer= 0.000001 mm) over the same substrate by electron beam lithography, as a result, multifunctional biochips of major versatility will be developed. The possibility to record at nanometric scale is an essential benefit facing traditional biomimetic materials since this new material developed by researchers at the Universidad Politécnica de Madrid (UPM) and the Universidad Complutense (UCM) within the framework of Moncloa campus provides commercial potential applications.

New biomimetic material to develop nanosensors

Madrid, Spain | Posted on October 3rd, 2013

This material is compound by a cross-linking linear polymer whose molecular structure is altered by the bombing with electrons. In this way, it is possible to use an electron beam of a few nanometers thick, as if it were an ultra fine point pencil, to write a pattern over a movie of this material adhered to a substrate. After the writing (lithography), the movie is submerged in a liquid developer able to dissolve the film area irradiated by the beam and to leave intact the non irradiated pattern over the substrate.

In addition, the material behaves as a molecularly imprinted polymer (MIP), that is, it is able to recognize a molecule or a specific compound after a printing process at molecular level. The MIPs are synthetic materials with similar functionality to certain biological molecules, such as antigens and antibodies, used as receptors to detect certain molecules, for that reason MIPs are considered as biomimetic materials. The main benefits of the MIPs over the biological receptors are higher resistance to chemicals and extreme weather, lower cost and the ability to create synthetic chemical receptors inexistent in nature.

To date, in order to develop sensors, the methods used to record films in MIPs are based on printing and photolithography techniques. The main drawback of the printing method is the possible contamination of film surfaces of MIP which are in contact with printing molds, whereas the photolithography technique is not suitable to create nanometrics reasons. The new material can be recorded at nanometric scale with no need of mold of mask.

Researchers at the UPM and the UCM have developed nanometrics patterns of this material over silicon substrates by using an electron beam and proving the functionality of the MIP. The material is able to recognize the Rhodamine 123, which is a fluorescent molecule of high sensitivity and selectivity over other rhodamines. The methodology used to develop this material can be applied to the synthesis of other materials susceptible to be recorded by beam of electrons and able to detect substance of interest in toxicology and biomedicine.

The development of nanometrics structures of sensor materials has a double purpose. Firstly, a higher interaction between the sensor and the environment where the analyte is detected, increasing the speed and sensitivity detection. Secondly, the slight size of the sensor structures allow us to integrate multiple elements in just one chip o substrate saving costs and increasing its reliability and functionality of trials.

The method of development of this material was protected by a patent

This project was funded by the former Ministry of Science and Innovation within the framework of Explora project whose main researcher was Carlos Angulo Barrios of the Institute of Optoelectronics Systems and Microtechnology (ISOM) of the UPM. The EXPLORA projects are oriented to promote scientific curiosity, searching for creative research proposals resulting in a deep reflection on a given problem.

####

For more information, please click here

Contacts:
Victoria Ferreiro

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Sensors

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Materials/Metamaterials

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Tools

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

New Objective Focusing Nanopositioner from nPoint July 30th, 2014

Patents/IP/Tech Transfer/Licensing

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Printing/Lithography/Inkjet/Inks

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE