Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The world's sharpest X-ray beam shines at DESY: Researchers of the University of Gottingen substantially increase resolution at DESY's light source PETRA III

This is an electron micrograph of the micro lens on the tip of a needle. The lens has a diameter of just two microns (thousandths of a millimeter).

Credit: Image: University of Göttingen
This is an electron micrograph of the micro lens on the tip of a needle. The lens has a diameter of just two microns (thousandths of a millimeter).

Credit: Image: University of Göttingen

Abstract:
The world's sharpest X-ray beam shines at DESY. At the X-ray light source PETRA III, scientists from Göttingen generated a beam with a diameter of barely 5 nanometres - this is ten thousand times thinner than a human hair. This fine beam of X-ray light allows focusing on smallest details. The research groups of Professor Tim Salditt from the Institute of X-ray Physics and of Professor Hans-Ulrich Krebs from the Institute of Materials Physics of the University of Göttingen published their work in the research journal Optics Express.

The world's sharpest X-ray beam shines at DESY: Researchers of the University of Gottingen substantially increase resolution at DESY's light source PETRA III

Göttingen, Germany | Posted on September 30th, 2013

High-energy (hard) X-ray light cannot be focused as easily as visible light by using a burning glass. "Instead of a common lens, we use a so-called Fresnel lens which consists of several layers," explains co-author Dr. Markus Osterhoff. The central support is a fine tungsten wire with the thickness of only a thousandth of a millimetre. Around the wire, nanometre-thin silicon and tungsten layers are applied in an alternating way. The physicists then cut a thin slice from the coated wire. "This slice has 50 to 60 silicon and tungsten layers, comparable to growth rings of a tree," explains team member Florian Döring. "And the layer thicknesses have to be extremely precise," adds Christian Eberl. The two PhD students have optimized the different fabrication steps.

The wire slice with a size of only about two thousandths of a millimetre is used as a lens. However, it does not diffract light like a glass lens but scatters it like an optical grid generating a pattern of bright and dark patches. In this case, the thickness of the layers is selected in such a way that the bright areas of the diffraction pattern coincide at the same spot. The more precise the lens is fabricated, the sharper becomes the X-ray focus. With this method, the physicists obtained an X-ray beam of 4.3 nanometres (millionth of a millimetre) diameter in horizontal direction and 4.7 nanometres diameter in vertical direction. Until recently it was even debated whether fundamental limits of X-ray optics would stand against such small focal widths. The outstanding brilliance of DESY's X-ray light source PETRA III helped to make a usable nano focus possible.

The fine X-ray beam opens up new possibilities for materials science, e.g. the investigation of nano wires to be used in solar cells. "Usually, when investigating the chemical composition of a sample, the beam size limits the sharpness of the image. Before this experiment, this limit was at about 20 nanometers", said DESY researcher Dr. Michael Sprung, responsible scientist for the PETRA measuring station P10, where the experiments are carried out.

As a next step, the scientists want to improve the performance by depositing the layers on ultrathin and extremely uniform glass fibres. Moreover, they plan to scan first nanoscopic structures with their novel ultra-sharp beam. In the future, such a lens should help to create foci of ultimate flux density with free-electron laser (FEL) radiation.

####

For more information, please click here

Contacts:
Dr. Thomas Zoufal

49-408-998-1666

Copyright © Deutsches Elektronen-Synchrotron DESY

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Imaging

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Discoveries

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Announcements

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Tools

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project