Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The world's sharpest X-ray beam shines at DESY: Researchers of the University of Gottingen substantially increase resolution at DESY's light source PETRA III

This is an electron micrograph of the micro lens on the tip of a needle. The lens has a diameter of just two microns (thousandths of a millimeter).

Credit: Image: University of Göttingen
This is an electron micrograph of the micro lens on the tip of a needle. The lens has a diameter of just two microns (thousandths of a millimeter).

Credit: Image: University of Göttingen

Abstract:
The world's sharpest X-ray beam shines at DESY. At the X-ray light source PETRA III, scientists from Göttingen generated a beam with a diameter of barely 5 nanometres - this is ten thousand times thinner than a human hair. This fine beam of X-ray light allows focusing on smallest details. The research groups of Professor Tim Salditt from the Institute of X-ray Physics and of Professor Hans-Ulrich Krebs from the Institute of Materials Physics of the University of Göttingen published their work in the research journal Optics Express.

The world's sharpest X-ray beam shines at DESY: Researchers of the University of Gottingen substantially increase resolution at DESY's light source PETRA III

Göttingen, Germany | Posted on September 30th, 2013

High-energy (hard) X-ray light cannot be focused as easily as visible light by using a burning glass. "Instead of a common lens, we use a so-called Fresnel lens which consists of several layers," explains co-author Dr. Markus Osterhoff. The central support is a fine tungsten wire with the thickness of only a thousandth of a millimetre. Around the wire, nanometre-thin silicon and tungsten layers are applied in an alternating way. The physicists then cut a thin slice from the coated wire. "This slice has 50 to 60 silicon and tungsten layers, comparable to growth rings of a tree," explains team member Florian Döring. "And the layer thicknesses have to be extremely precise," adds Christian Eberl. The two PhD students have optimized the different fabrication steps.

The wire slice with a size of only about two thousandths of a millimetre is used as a lens. However, it does not diffract light like a glass lens but scatters it like an optical grid generating a pattern of bright and dark patches. In this case, the thickness of the layers is selected in such a way that the bright areas of the diffraction pattern coincide at the same spot. The more precise the lens is fabricated, the sharper becomes the X-ray focus. With this method, the physicists obtained an X-ray beam of 4.3 nanometres (millionth of a millimetre) diameter in horizontal direction and 4.7 nanometres diameter in vertical direction. Until recently it was even debated whether fundamental limits of X-ray optics would stand against such small focal widths. The outstanding brilliance of DESY's X-ray light source PETRA III helped to make a usable nano focus possible.

The fine X-ray beam opens up new possibilities for materials science, e.g. the investigation of nano wires to be used in solar cells. "Usually, when investigating the chemical composition of a sample, the beam size limits the sharpness of the image. Before this experiment, this limit was at about 20 nanometers", said DESY researcher Dr. Michael Sprung, responsible scientist for the PETRA measuring station P10, where the experiments are carried out.

As a next step, the scientists want to improve the performance by depositing the layers on ultrathin and extremely uniform glass fibres. Moreover, they plan to scan first nanoscopic structures with their novel ultra-sharp beam. In the future, such a lens should help to create foci of ultimate flux density with free-electron laser (FEL) radiation.

####

For more information, please click here

Contacts:
Dr. Thomas Zoufal

49-408-998-1666

Copyright © Deutsches Elektronen-Synchrotron DESY

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Imaging

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Leti Presents Optical-Equipment Curving Technology that Improves Performance, Cuts Costs: ‘Disruptive Approach’ for Imaging Applications Presented in Paper At Photonics West and Demonstrated in Leti’s Booth February 2nd, 2018

New technology aiming to improve trueness in the piezoelectric microscopy characterization of ceramic materials January 26th, 2018

Discoveries

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Announcements

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Tools

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project