Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers from Dresden and Mainz present a new multifunctional topological insulator material with combined superconductivity: New material combines different, at first view contradicting properties with a high potential for future quantum electronics and computation

Abstract:
Most materials show one function, for example, a material can be a metal, a semiconductor, or an insulator. Metals such as copper are used as conducting wires with only low resistance and energy loss. Superconductors are metals which can conduct current even without any resistance, although only far below room temperature. Semiconductors, the foundation of current computer technology, show only low conduction of current, while insulators show no conductivity at all. Physicists have recently been excited about a new exotic type of materials, so-called topological insulators. A topological insulator is insulating inside the bulk like a normal insulator, while on the surface it shows conductivity like a metal. When a topological insulator is interfaced with a superconductor, a mysterious particle called Majorana fermion emerges, which can be used to fabricate a quantum computer that can run much more quickly than any current computer. Searching for Majorana fermions based on a topological insulator-superconductor interface has thus become a hot race just very recently.

Researchers from Dresden and Mainz present a new multifunctional topological insulator material with combined superconductivity: New material combines different, at first view contradicting properties with a high potential for future quantum electronics and computation

Mainz, Germany | Posted on September 25th, 2013

Computer-based materials design has demonstrated its power in scientific research, saving resources and also accelerating the search for new materials for specific purposes. By employing state-of-art materials design methods, Dr. Binghai Yan and his collaborators from the Max Planck Institute for Chemical Physics of Solids and Johannes Gutenberg University Mainz (JGU) have recently predicted that the oxide compound BaBiO3 combines two required properties, i.e., topological insulator and superconductivity. This material has been known for about thirty years as a high-temperature superconductor of Tc of nearly 30 Kelvin with p-type doping. Now it has been discovered to be also a topological insulator with n-type doping. A p-n junction type of simple device assisted by gating or electrolyte gating is proposed to realize Majorana fermions for quantum computation, which does not require a complex interface between two materials.

In addition to their options for use in quantum computers, topological insulators hold great potential applications in the emerging technology of spintronics and thermoelectrics for energy harvesting. One major obstacle for widespread application is the relatively small size of the bulk band gap, which is typically around 0.3 electron-volts (eV) for previously known topological insulator materials. Currently identified material exhibits a much larger energy-gap of 0.7 eV. Inside the energy-gap, metallic topological surface states exist with a Dirac-cone type of band structures.

The research leading to the recent publication in Nature Physics was performed by a team of researchers from Dresden and Mainz around the theoretical physicist Dr. Binghai Yan and the experimental chemists Professor Martin Jansen and Professor Claudia Felser. "Now we are trying to synthesize n-type doped BaBiO3," said Jansen. "And we hope to be soon able to realize our idea."

####

For more information, please click here

Contacts:
Dr. Binghai Yan
Professor Dr. Claudia Felser
Max Planck Institute for Chemical Physics of Solids
D 01187 Dresden
Tel +49 351 4646-3001
Fax 49 351 4646-3002

Professor Dr. Claudia Felser
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University
D 55099 Mainz
Tel +49 6131 39-21284
Fax +49 6131 39-26267

Copyright © Johannes Gutenberg Universitaet Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication

Dr. Binghai Yan homepage:

Professor Dr. Claudia Felser homepage:

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Superconductivity

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE