Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Smile! New nanotube surface promises dental implants that heal faster and fight infection

This is a bone cell anchoring itself to a surface of titanium dioxide nanotubes. Because osteoblasts readily adhere to this novel surface, dental implants coated with TiO2 nanotubes could significantly improve healing following dental implant surgery.

Credit: Tolou Shokuhfar
This is a bone cell anchoring itself to a surface of titanium dioxide nanotubes. Because osteoblasts readily adhere to this novel surface, dental implants coated with TiO2 nanotubes could significantly improve healing following dental implant surgery.

Credit: Tolou Shokuhfar

Abstract:
A brighter, better, longer-lasting dental implant may soon be on its way to your dentist's office.

Dental implants are posts, usually made of titanium, that are surgically placed into the jawbone and topped with artificial teeth. More than dentures or bridges, implants mimic the look and feel of natural teeth. While most dental implants are successful, a small percentage fail and either fall out or must be removed. A scientist at Michigan Technological University wants to lower that rate to zero using nanotechnology.

Smile! New nanotube surface promises dental implants that heal faster and fight infection

Houghton, MI | Posted on September 23rd, 2013

"Dental implants can greatly improve the lives of people who need them," said Tolou Shokuhfar, an assistant professor of mechanical engineering. "But there are two main issues that concern dentists: infection and separation from the bone."

The mouth is a dirty place, so bacterial infections are a risk after implant surgery, and sometimes bone fails to heal securely around the device. Because jawbones are somewhat thin and delicate, replacing a failed implant can be difficult, not to mention expensive. Generally, dentists charge between $2,000 and $4,000 to install a single implant, and the procedure is rarely covered by insurance.

Enter a nano-material that can battle infection, improve healing, and help dental implants last a lifetime: titanium dioxide nanotubes.

Shokuhfar is now working with Cortino Sukotjo, a clinical assistant professor at the University of Illinois at Chicago (UIC) College of Dentistry on a dental implant with a surface made from TiO2 nanotubes, but she has been making and testing them for several years. "We have done toxicity tests on the nanotubes, and not only did they not kill cells, they encouraged growth," she said. She has already demonstrated that bone cells grow more vigorously and adhere better to titanium coated with TiO2 nanotubes than to conventional titanium surfaces. That could keep more dental implants in place.

The nanotubes can also be a drug delivery system. Shokuhfar's team, in collaboration with Alexander Yarin, a professor in UIC's Department of Mechanical and Industrial Engineering, loaded TiO2 nanotubes with the anti-inflammatory drug sodium naproxen and demonstrated that it could be released gradually after implant surgery. That assures that the medicine gets where it's needed, and it reduces the chances of unpleasant side effects that arise when a drug is injected or taken orally.

To fight infection, the TiO2 nanotubes can also be laced with silver nanoparticles. Shokuhfar and Craig Friedrich, who holds the Richard and Bonnie Robbins Chair of Sustainable Design and Manufacturing at Michigan Tech, are conducting research, as yet unpublished, which is focused on orthopedic implants, such as artificial hips, but which also applies to dental implants. "Silver has antimicrobial properties, and we are capable of obtaining a dose that can kill microbes but would not hurt healthy cells and tissues," she said. In particular, it can help prevent biofilms, vast colonies of bacteria that can cover implants and be very difficult to eradicate. A nanotextured implant surface embedded with silver nanoparticles could prevent infection for the life of the implant.

The TiO2 nanotubes also have a cosmetic advantage: transparency. That's a plus for any dental implant, but especially for a new type made from zirconia, which some patients choose because it is totally white.

Shokuhfar and Friedrich have received a provisional patent and are working with two hospitals to further develop the technology,and eventually license it. Shokuhfar expects that implants with the new nanotubular surface will be easily assimilated into the market, since titanium implants, both dental and orthopedic, have a long history. "Yes, the surface consists of nanotubes, but basically nanotubes are just a thicker form of the native oxide, which is the same as the white pigment that you find everywhere: in food, toothpaste, cosmetics, multivitamin and multimineral supplements, paints—all kinds of products," she said. And implants covered with TiO2 nanotubes would appear the same as conventional implants. "A surgeon wouldn't have to do anything different," she said.

For Shokuhfar, the nanotextured surface is a perfect example of small things having a big impact, both literally and figuratively. "What we're developing is a surface that's inexpensive and easy to make and which can speed healing in so many ways," she said. "It can fight infection by adding antimicrobial silver and reduce inflammation by adding sodium naproxen. It's also likely that we could promote healing even more by incorporating a growth factor into the TiO2 nanotubes.

"It's very exciting to be working on a product that could make a huge difference in people's lives."

###

The team's research involving sodium naproxen appears in the article "Intercalation of Anti-inflammatory Drug Molecules within TiO2 Nanotubes," coauthored by Shokuhfar; Suman Sinha-Ray of the UIC Department of Mechanical and Industrial Engineering, Sukotjo, and Yarin, published online July 19 in RSC Advances. The article "Biophysical Evaluation of Osteoblasts on TiO2 Nanotubes" is under revision in the journal Nanomedicine: Nanotechnology, Biology, and Medicine. The paper "Survivability of TiO2 Nanotubes on the Surface of Bone Screws" has been accepted by the journal Surface Innovations. It describes work showing that specially treated TiO2 nanotubes on the surface of orthopedic bone screws survive insertion and removal in bone simulant material.

####

For more information, please click here

Contacts:
Jennifer Donovan

906-487-4521

Copyright © Michigan Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Discoveries

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Materials/Metamaterials

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Announcements

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Dental

New stem cell technique shows promise for bone repair January 25th, 2017

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project