Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers discover evidence to support controversial theory of 'buckyball' formation: Discovery could have a bearing on medical imaging, cancer treatment

Harry Dorn, a professor at the Virginia Tech Carilion Research Institute, poses with models of "buckyballs." His research supports the theory that a soccer ball-shaped nanoparticle commonly called a buckyball is the result of a breakdown of larger structures rather than being built atom-by-atom from the ground up.

Credit: Virginia Tech
Harry Dorn, a professor at the Virginia Tech Carilion Research Institute, poses with models of "buckyballs." His research supports the theory that a soccer ball-shaped nanoparticle commonly called a buckyball is the result of a breakdown of larger structures rather than being built atom-by-atom from the ground up.

Credit: Virginia Tech

Abstract:
Researchers at the Virginia Tech Carilion Research Institute have reported the first experimental evidence that supports the theory that a soccer ball-shaped nanoparticle commonly called a buckyball is the result of a breakdown of larger structures rather than being built atom-by-atom from the ground up.

Researchers discover evidence to support controversial theory of 'buckyball' formation: Discovery could have a bearing on medical imaging, cancer treatment

Blacksburg, VA | Posted on September 16th, 2013

Technically known as fullerenes, these spherical carbon molecules have shown great promise for uses in medicine, solar energy, and optoelectronics. But finding applications for these peculiar structures has been difficult because no one knows exactly how they are formed.

Two theories compete regarding the molecular mechanisms that make fullerenes. The first and oldest is the "bottom-up" theory, which says these carbon cages are built atom-by-atom, like the construction of a Lego model. The second, more recent, theory takes a "top-down" approach, suggesting that fullerenes form when much larger structures break into constituent parts.

After several years of debate with little more than computational models in support of how the top-down theory might work, researchers led by Harry Dorn, a professor at the research institute, have discovered the missing link: asymmetrical fullerenes that are formed from larger structures appear to settle into stable fullerenes.

The discovery appeared online Sept. 15 in the journal Nature Chemistry.

"Understanding the molecular mechanics of how fullerenes and their many variations are formed is not just a curiosity," said Dorn, who has been researching metallofullerenes - fullerenes with a few atoms of metal held within - for more than two decades. "It would give us insights into new, better ways to prepare them. Fullerenes and metallofullerenes are already involved in hundreds of biomedical studies. The ability to create large numbers of a wide variety of metallofullerenes would be a giant building block that would take the field to new heights."

The medicinal promise of metallofullerenes stems from the atoms of metal caged within them. Because the metal atoms are trapped in a cage of carbon, they do not react with the outside world, making their side-effect risks low in both number and intensity.

For example, one particular metallofullerene with gadolinium at its core has been shown to be up to 40 times better as a contrast agent in magnetic resonance imaging scans for diagnostic imaging than options now commercially available. Current experiments are also directed at using metallofullerenes to carry therapeutic radioactive ions to target cancer tissue.

"A better understanding of the formation of fullerenes and metallofullerenes may allow the development of new contrast agents for magnetic resonance imaging at commercial-level quantities," said Jianyuan Zhang, a graduate student in Dorn's laboratory and the first author of the paper. "These larger quantities will facilitate a next generation of contrast agents with multiple targets."

Dorn's new study hinges on the isolation and purification of approximately 100 micrograms — roughly the size of several specks of pepper — of a particular metallofullerene consisting of 84 carbon atoms with two additional carbon atoms and two yttrium atoms trapped inside.

When Dorn and his colleagues determined the metallofullerene's exact structure using nuclear magnetic resonance imaging and single crystal X-ray analysis, they made a startling discovery —the asymmetrical molecule could theoretically collapse to form nearly every known fullerene and metallofullerene.

All the process would require would be a few minor perturbations — the breaking of only a few molecular bonds — and the cage would become highly symmetrical and stable.

This insight, Dorn said, supports the theory that fullerenes are formed from graphene — a single sheet of carbon just one atom thick — when key molecular bonds begin to break down. And although the study focuses on fullerenes with yttrium trapped inside, it also shows that the carbon distribution looks similar for empty cages, suggesting regular fullerenes form the same way.

"Not only are the findings presented in Dr. Dorn's paper extremely interesting, but the study represents a real milestone in the field," said Takeshi Akasaka, a professor of chemistry at the University of Tsukuba in Japan and an authority in the field of metallofullerene research, who was not involved in the study. "The study presents physical evidence for a process of metallofullerene creation that most scientists in the field initially scoffed at."

Dorn said scientists have questioned the bottom-up theory of fullerene formation ever since it was discovered that fullerenes were formed from asteroids colliding with Earth and fullerenes were found in interstellar space.

"With this study, we hope to be that much closer to understanding their formation and creating entirely new classes of fullerenes and metallofullerenes that could be useful in medicine as well as in other fields that haven't even occurred to us yet," Dorn said.

"Dr. Dorn's insight into the fundamental process whereby fullerenes are formed is a major contribution to the field," said Michael Friedlander, executive director of the Virginia Tech Carilion Research Institute. "Understanding the molecular steps in their formation is key to realizing fully the potential of this versatile and potentially potent family of chemicals in medicine. Dr. Dorn's contributions to understanding these molecules are paving the way for the formulation of targeted novel diagnostics, therapeutics, and the combination of both—theranostics. This approach will provide an important component for tomorrow's arsenal of precision medicine."

Dorn and Zhang's research collaborators include Faye Bowles, a graduate student researcher; Marilyn Olmstead, a professor of chemistry; and Alan Balch, a distinguished professor of chemistry; all from the University of California, Davis.

Also participating were Daniel Bearden, a research scientist with the Hollings Marine Laboratory at the National Institute of Standards and Technology, and Tim Fuhrer, now an assistant professor of chemistry at Radford University.

Researchers from Virginia Tech who worked on the study include Richard Helm, an associate professor of biochemistry; W. Keith Ray, a senior research associate in biochemistry; Youqing Ye, a graduate student in chemistry; Caitlyn Dixon, an undergraduate student in chemistry; and Kim Harich, an analytical chemist senior in biochemistry.

####

For more information, please click here

Contacts:
Paula Byron

540-526-2027

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Laboratories

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Advanced Light Source Sets Microscopy Record| Berkeley Lab Researchers Achieve Highest Resolution Ever with X-ray Microscopy September 11th, 2014

Govt.-Legislation/Regulation/Funding/Policy

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Nanomedicine

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Optical Computing

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Atomically thin material opens door for integrated nanophotonic circuits September 4th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Discoveries

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Materials/Metamaterials

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

Announcements

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Energy

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Photonics/Optics/Lasers

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Solar/Photovoltaic

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE