Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Saws made of carbon

New ultra-thin saw wire for cutting silicon wafers: diamond on top of carbon nanotubes.
 Fraunhofer IWM
New ultra-thin saw wire for cutting silicon wafers: diamond on top of carbon nanotubes.

Fraunhofer IWM

Abstract:
More material could be saved when manufacturing wafers in future. Ultra-thin saws made of carbon nanotubes and diamond would be able to cut through silicon wafers with minimum kerf loss. A new method makes it possible to manufacture the saw wires.

Saws made of carbon

Freiburg, Germany | Posted on September 9th, 2013

You can't saw without producing sawdust - and that can be expensive if, for example, the "dust" comes from wafer manufacturing in the photovoltaic and semiconductor industries, where relatively high kerf loss has been accepted as an unavoidable, if highly regrettable, fact of life. But now scientists from the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg together with colleagues from the Australian Commonwealth Scientific and Industrial Research Organisation CSIRO have developed a saw wire that is set to effect dramatic reductions in kerf loss: in place of diamond-impregnated steel wires, the researchers use ultra-thin and extremely stable threads made of carbon nanotubes coated with diamond.

The potential of coated carbon nanotubes has long been understood: possible applications include its use as a hard and tough composite material or as a component of highly sensitive sensors and thermoelectric generators. However, the new material is extremely difficult to synthesize. Diamonds only grow under extreme conditions - at temperatures of around 900 degrees Celsius in an atmosphere containing hydrocarbons. Growing diamonds on nanotubes is a tricky proposition, because carbon tends to form graphite. In order to catalyse the formation of the diamond phase, it's necessary to use reactive hydrogen to prohibit the deposition of graphite. However, this process also damages the carbon nanotubes.

But the IWM scientist Manuel Mee found a solution for protecting the fine carbon nanotubes, which grow like forests on a substrate: "During our first experiments, fused silica from the reaction chamber accidentally came into contact with the coating plasma. It settled on the substrate and protected it against the aggressive hydrogen." And to his surprise, diamonds actually grew on this layer. "What followed was careful, painstaking work," points out Mee. "We had to study the silicon oxide layer, which was deposited in an undefined manner, and find a method of controlling the deposition and optimizing the process." Tests with a transmission electron microscope at CSIRO's lab in Australia revealed that the nanotubes actually survived under their protective layer.

A German-Australian success story

How exactly to proceed from there was the question that now faced the scientists. If they found a way to coat with diamond the nanothreads that the CSIRO specialists make from nanotubes, these diamond-coated nanothreads could be used to manufacture ultra-thin saws capable of cutting through silicon wafers for instance. The Australian team at CSIRO is one of the principal global experts with the know-how to manufacture yarns from carbon nanotubes. The manufacturing process requires special carbon nanotube "forests", which can be extracted as an ultra-thin "felt" and twisted into a very thin yarn ten to twenty micrometers in diameter. In principle, this diamond-coated yarn is the ideal material on which to base a new generation of saws, which could be used in the solar industry for example. As Mee explains: "The new saw wires held out the promise of being far superior to traditional steel wires. Because of their high tensile strength, they can be manufactured much thinner than steel wires - and that means significantly less kerf loss."

In the meantime, the physicist has managed to implement his idea. A joint patent application by Fraunhofer and CSIRO has already been filed for the method and corresponding products. Mee and his colleagues are currently carrying out sawing tests. "To be able to show our partners in industry the potential the technology holds," says Mee, "we have to demonstrate how it can help solar companies to save material when processing wafers."

####

For more information, please click here

Contacts:
Manuel Mee

49-761-514-2490

Copyright © Fraunhofer-Gesellschaft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Research News August 2013 Complete Issue [ PDF 0.4399080276489258 MB ]:

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Chip Technology

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Nanotubes/Buckyballs

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Carbon Nanotubes Increase Efficiency of Solar Cells January 12th, 2015

Discoveries

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Materials/Metamaterials

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Energy

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Research partnerships

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Charge instability detected across all types of copper-based superconductors: Findings may help researchers synthesize materials that can superconduct at room temperature January 16th, 2015

Gold nanoparticles show promise for early detection of heart attacks: NYU School of Engineering Professors collaborate with researchers from Peking University on a new test strip January 15th, 2015

Solar/Photovoltaic

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE