Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Two become one with the 3D NanoChemiscope - unique surface analysis instrument

The result of a combined three-dimensional ToF-SIMS-/SFM surface analysis of a PCBM/CyI-polymer blend used by Empa's Functional Polymers Laboratory to produce organic solar cells.
The result of a combined three-dimensional ToF-SIMS-/SFM surface analysis of a PCBM/CyI-polymer blend used by Empa's Functional Polymers Laboratory to produce organic solar cells.

Abstract:
The 3D NanoChemiscope is a miracle of state-of-the-art analysis technology. As a further development of well-known microscopic and mass spectroscopic methods, it maps the physical and chemical surfaces of materials down to the atomic level. This instrument, which is unique in the world, not only delivers high-definition images; it also knows what it is "seeing".

Two become one with the 3D NanoChemiscope - unique surface analysis instrument

Dübendorf, Switzerland | Posted on August 24th, 2013

What do a penguin and the surface of a solar cell have in common? Not a lot concedes Empa physicist Laetitia Bernard. Yet she must have smiled when, while processing an image of a polymer blend required to produce a new type of organic solar cell, at a certain point she could make out more and more clearly the outline of a penguin. A small detail in the complex world of high-performance microscopy. The 3D NanoChemiscope, which was developed at Empa, not only maps samples with nanometre precision, but for the first time can also provide precise information about which chemical elements are arranged where in a sample. This enables both mechanical properties, such as hardness, elasticity or friction, and chemical properties of surfaces to be determined simultaneously in three dimensions. In the case of the "penguin" image, this means that the 3D NanoChemiscope not only captures the outline of the "penguin", but also detects which polymers are located at its "beak", at its "eye" and "around" it. Using this analysis technique, the solar cell researchers are able to efficiently control the mechanisms of their materials and adapt the composition or concentration of their polymer blend accordingly. This enables new structures and therefore leads to better performances of the solar cell to be created.

Scanning force microscope and high-end mass spectrometer

This analysis is made possible by the 3D NanoChemiscope, which combines two previously independent techniques. The scanning force microscope (SFM) scans the surface with an ultra-fine tip, while the time-of-flight secondary ion mass spectrometer (ToF-SIMS) determines the material composition of the first surface mono-layer by "shooting" metallic ions at it.

Up to now, in order to study both the chemical and physical properties of surfaces, it was necessary to analyse the sample in two different instruments. However, when transporting the sample from one instrument to the other, there was always a danger of contamination or oxidation. In addition, it was practically impossible to find the exact location scanned by the SFM again. What, therefore, could be more appropriate than to "combine" the two instruments? In a four-year project sponsored by the EU, project leader Laetitia Bernard, together with Empa researchers and partners from academia and industry, has carried out meticulous work to develop a new instrument in which an SFM and a ToF-SIMS are placed in an ultra-high vacuum chamber as near to each other as possible.

The microscope experts have also equipped the 3D NanoChemiscope with a novel transport system developed in-house, which uses piezomotors to move the sample gently back and forth on tracks coated with a diamond-like carbon layer (DLC). The sample holder can move along five axes, allowing the location under investigation to be analysed from any angle.

Following its construction, the prototype - a monster made of gleaming aluminium 1 metre long, 70 centimetres wide and 1.7 metres tall - has been in operation at project partner ION-TOF GmbH in Münster, Germany, where it is being used by industrial clients and research partners. The construction of more instruments is planned, customers having expressed a keen interest and being prepared to pay sums over one million Swiss francs.

####

About Empa
Empa as a Swiss Materials Science and Technology Institution within the ETH domain is part of the Swiss Science-Technology-Education community. It specializes in applied research and development as well as sophisticated services in the field of sustainable materials science and technology. Its core activities are innovative collaboration with industry and public institutions to ensure the safety of humankind and the environment, knowledge propagation and university-level teaching. The Empa Academy disseminates the latest results of our work at events and in publications. The focal points of our activities are: modern materials, their surfaces and interfaces, construction materials and systems, materials and systems that protect the human body and ensure its wellbeing, information, simulation and reliability technology, and mobility, energy and the environment. Approximately 820 employees work in over 30 specialist fields in nationally and internationally funded research programs, partnership-based development projects and interdisciplinary customer-specific service assignments.

For more information, please click here

Contacts:
Martina Peter
+41 44 823 55 11


Dr. Laetitia Bernard
Nanoscale Materials Science
Tel. +41 58 765 40 70


Prof. Dr. Hans Josef Hug
Nanoscale Materials Science
Tel. +41 58 765 41 25

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Imaging

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Tools

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

New Objective Focusing Nanopositioner from nPoint July 30th, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Solar/Photovoltaic

From Narrow to Broad July 30th, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE