Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > St George's Hospital uses Nanoparticle Tracking Analysis to study extracellular vesicles as biomarkers for diseases

Michelle Levene, a PhD student of the Clinical Sciences Division at St Georges uses the NanoSight LM10 NTA system used to characterize proteins and peptides.
Michelle Levene, a PhD student of the Clinical Sciences Division at St Georges uses the NanoSight LM10 NTA system used to characterize proteins and peptides.

Abstract:
NanoSight reports on how Nanoparticle Tracking Analysis, NTA, is being used at St George's, University of London, to explore extracellular vesicles as a potential source of biomarkers, by identifying proteins or peptides differentially expressed between healthy subjects and patients with rare inherited diseases

St George's Hospital uses Nanoparticle Tracking Analysis to study extracellular vesicles as biomarkers for diseases

Salisbury, UK | Posted on August 13th, 2013

St George's, University of London, is the UK's only independent medical and healthcare higher education institution. Dr Bridget Bax is a senior research fellow in the Clinical Sciences Division where the main focus of her group's research is to improve the understanding of the pathogenic mechanisms of rare inherited diseases and to develop novel therapies for translation into the clinical setting. One of their major areas of interest is the identification and validation of biomarkers in patients with the rare and fatal disease mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). They are currently exploring the use of extracellular vesicles as source of biomarkers by identifying proteins or peptides differentially expressed between healthy subjects and patients with MNGIE. The goals of this work are three-fold: to understand the pathophysiological mechanisms and metabolic derangements observed in patients with MNGIE; to provide a means of monitoring more effectively clinical and biochemical response to therapy; and to enable the tracking of disease progression in diagnosed patients.

Describing her work, Dr Bax said "We have used several methods in the lab to isolate both exosomes and microparticles. We needed a reproducible method that would allow us to i) quantitate and size the extracellular vesicles we isolated and ii) determine whether the isolation technique employed affected these parameters. Nanoparticle Tracking Analysis has allowed us to quantify extracellular vesicles with diameters in the range of 50 to 1000 nm. This was particularly important for us because we specifically wanted to study exosomes which have a diameter ranging from 40 to 100 nm."

Prior to using NTA, initially the group used electron microscopy and fluorescence-activated cell sorting (FACS), a biophysical technique used in flow cytometry. Using FACS, Dr Bax said "We were unable to detect exosomes and found that a significant number of microparticles were missed due to not detecting vesicles with a diameter <300 nm. Although it was possible to size extracellular vesicles using electron microscopy, this is a time intensive technique and has the potential disadvantages of causing shrinkage."

Dr Bax went on to discuss her thoughts on using NTA: "The benefits are the ability to detect particles within the size range of interest. NTA uses small sample volumes which is extremely important in terms of the rare diseases we study. We find the system easy to use."

To find out about the company and to learn more about particle characterization using NanoSight's unique Nanoparticle Tracking Analysis solutions, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10 nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements are similarly particle-specific. It is this particle-by-particle methodology that takes NTA beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

This simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 600 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 850+ third party papers citing NanoSight results. NanoSight's leadership position in nanoparticle characterization is consolidated further with publication of an ASTM International standard, ASTM E2834, which describes the NTA methodology for detection and analysis of nanoparticles.

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT UK
T +44(0)1980 676060
F +44(0)1980 624703
www.nanosight.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Discoveries

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Tools

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project