Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers dismantle bacteria's war machinery: A nano-machine cell killer: EPFL researchers decipher the attack strategy of certain bacteria, including the infamous Staphylococcus aureus

© photos.com
© photos.com

Abstract:
This is a veritable mechanics of aggression on the nanoscale. Certain bacteria, including Staphylococcus aureus, have the ability to deploy tiny darts. This biological weapon kills the host cell by piercing the membrane. Researchers at EPFL have dismantled, piece by piece, this intriguing little machine and found an assembly of proteins that, in unfolding at the right time, takes the form of a spur. Published in Nature Chemical Biology, this discovery offers new insight into the fight against pathogens that are increasingly resistant to antibiotics.

Researchers dismantle bacteria's war machinery: A nano-machine cell killer: EPFL researchers decipher the attack strategy of certain bacteria, including the infamous Staphylococcus aureus

Lausanne, Switzerland | Posted on August 5th, 2013

To attack the host cell, the weapon must first attach. On the surface of the aggressor is a mechanism composed of seven proteins that are folded over and assembled into a ring. The researchers were able to show how, in time, these long molecules unfold to form a kind of spur.

The trigger is just another part of the machine - a peptide, or a small organic molecule. When exposed to the enzymes of the host organism, it detaches. The balance of the assembly adjusts: the proteins adopt a new form, spreading out in a circular motion to form a spur, which then pierces the membrane of the host cell.

Mechanical at the molecular level

No chemical reaction is involved in these biological weapons. This is a mechanical phenomenon, albeit on the molecular level. Matteo Dal Peraro, co-author of this study, also uses the term "nanomachine" to refer to this tool of aggression.

The EPFL researchers have worked on strains of Aeromonas hydrophila - a bacterium well-known among travelers for the intestinal disorders it causes. In Petri dishes the researchers could, at will, cause the formation of these darts, thereby exposing microorganisms to digestive enzymes. They were able to model precisely how each protein dynamically rearranges, once the peptide is missing, to form the spur.

Hinder the attack mechanism

For co-author Gisou Van der Goot, this discovery opens new therapeutic perspectives, for example in cases of nosocomial infection staphylococci. "We could imagine catheters coated with substitute peptides," she says. "They could prevent the formation of the ring and, thus, the spur. We would avoid many hospital infections."

The concept is to address the weaponry of the bacteria rather than the bacteria itself. This is particularly attractive at a time when multiple antibiotic resistances are becoming increasingly common. "This approach would have the advantage of not causing mutations, and thereby resistance, in pathogenic bacteria," says the researcher.

####

About Ecole Polytechnique Fédérale de Lausanne
EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

For more information, please click here

Contacts:
Matteo Dal Peraro

41-798-083-220

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Matteo T Degiacomi,Ioan Iacovache, Lucile Pernot, Mohamed Chami, Misha Kudryashev, Henning Stahlberg, F Gisou van der Goot & Matteo Dal Peraro, Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism, in Nature Chemical Biology (2013) doi:10.1038/nchembio.1312:

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Molecular Machines

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Light drives single-molecule nanoroadsters: Rice University scientists part of international team demonstrating untethered 3-wheelers November 4th, 2016

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project