Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Using gold and light to study molecules in water: Researchers at EPFL can now observe biomolecule interactions in a sample of water in real time; A major step for medicine

This is an infographic drawing showing how the new detection device works.

Credit: EPFL/Pascal Coderay
This is an infographic drawing showing how the new detection device works.

Credit: EPFL/Pascal Coderay

Abstract:
Thanks to a new device that is the size of a human hair, it is now possible to detect molecules in a liquid solution and observe their interactions. This is of major interest for the scientific community, as there is currently no reliable way of examining both the behavior and the chemical structure of molecules in a liquid in real time.

Using gold and light to study molecules in water: Researchers at EPFL can now observe biomolecule interactions in a sample of water in real time; A major step for medicine

Posted on July 31st, 2013

Developed at Boston University by Hatice Altug and her student Ronen Adato, the process brings together infrared detection techniques and gold nanoparticles. It could potentially make a whole new class of measurements possible, which would be a critical step in understanding basic biological functions as well as key aspects of disease progression and treatment. "Our technology could prove useful for studying the behaviour of proteins, medicines and cells in the blood or pollutants in water", says Hatice Altug.

Now a researcher at EPFL Dr. Altug has had her results published in Nature Communications.

Like a guitar string

The device is based on a well-known detection technique called infrared absorption spectroscopy. Infrared light can already be used to detect elements: The beam excites the molecules, which start to vibrate in different ways depending on their size, composition and other properties. "It's like a guitar string vibrating differently depending on its length," explains Hatice Altug. The unique vibration of each type of molecule acts as a signature for that molecule.

This technique works very well in dry environments but not at all well in aqueous environments. "A large number of molecules need to be present for them to be detected. It's also more difficult to detect molecules in water, as when the beam goes through the solution, the water molecules vibrate as well and interfere with the target molecule's signature," explains Dr. Altug.

Using nanoparticles to capture and illuminate molecules

To get around these obstacles, the researchers have developed a system capable of isolating the target molecules and eliminating interferences.

The size of a penny, the device is made up of miniature fluidic chambers, which are covered on one side with nano-scale gold particles with surprising properties. "We cover the surface of the nanoparticles with, for example, antibodies, in order to make a specific protein or chemical stick to them," explains the researcher. "Once the solution containing the targeted elements is introduced into the chamber, the nanoparticles act as molecule catchers." This technique makes it possible to isolate the target molecules from the rest of the liquid.

But this is not the only role the nanoparticles play. They are also capable of concentrating light in nanometer-size volumes around their surface as a result of plasmonic resonance.

In the chamber, the beam doesn't need to pass through the whole solution. Instead, it is sent straight to the nanoparticle, which concentrates the light. Caught in the trap, the target molecules are the only ones that are so intensely exposed to the photons.

The reaction between the molecules and the infrared photons is extremely strong, which means they can be detected and observed very precisely. "This technique enables us to observe molecules in-situ as they react with elements in their natural environment. This could prove extremely useful for both medicine and biology," states Dr. Altug.

Use in medical research

Another advantage is that the chip is extremely compact and can be connected to microscopes already in use. "We don't need large sample sizes to conduct our analyses," says Ronen Adato.

Going forward, Hatice Altug intends to continue her research with a focus on medical applications. The first tests have been conducted with ordinary antibody molecules, and the analyses now need to be fine-tuned. "I'd really like to work with other life-science researchers, hospitals and biologists. I'm especially interested in using my method in the study of diseases, including cancer and neurological disorders, to observe the effect of certain medicines on diseased cells or to detect disease biomarkers, for example."

####

For more information, please click here

Contacts:
Pessina Laure-Anne

41-793-602-538

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Imaging

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanomedicine

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Nanotechnology Treatment Found to Inhibit Mesothelioma Tumor Growth November 16th, 2016

Discoveries

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Water

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Water, water -- the two types of liquid water: Understanding water's behavior could help with Alzheimer's research November 11th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project