Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Using gold and light to study molecules in water: Researchers at EPFL can now observe biomolecule interactions in a sample of water in real time; A major step for medicine

This is an infographic drawing showing how the new detection device works.

Credit: EPFL/Pascal Coderay
This is an infographic drawing showing how the new detection device works.

Credit: EPFL/Pascal Coderay

Abstract:
Thanks to a new device that is the size of a human hair, it is now possible to detect molecules in a liquid solution and observe their interactions. This is of major interest for the scientific community, as there is currently no reliable way of examining both the behavior and the chemical structure of molecules in a liquid in real time.

Using gold and light to study molecules in water: Researchers at EPFL can now observe biomolecule interactions in a sample of water in real time; A major step for medicine

Posted on July 31st, 2013

Developed at Boston University by Hatice Altug and her student Ronen Adato, the process brings together infrared detection techniques and gold nanoparticles. It could potentially make a whole new class of measurements possible, which would be a critical step in understanding basic biological functions as well as key aspects of disease progression and treatment. "Our technology could prove useful for studying the behaviour of proteins, medicines and cells in the blood or pollutants in water", says Hatice Altug.

Now a researcher at EPFL Dr. Altug has had her results published in Nature Communications.

Like a guitar string

The device is based on a well-known detection technique called infrared absorption spectroscopy. Infrared light can already be used to detect elements: The beam excites the molecules, which start to vibrate in different ways depending on their size, composition and other properties. "It's like a guitar string vibrating differently depending on its length," explains Hatice Altug. The unique vibration of each type of molecule acts as a signature for that molecule.

This technique works very well in dry environments but not at all well in aqueous environments. "A large number of molecules need to be present for them to be detected. It's also more difficult to detect molecules in water, as when the beam goes through the solution, the water molecules vibrate as well and interfere with the target molecule's signature," explains Dr. Altug.

Using nanoparticles to capture and illuminate molecules

To get around these obstacles, the researchers have developed a system capable of isolating the target molecules and eliminating interferences.

The size of a penny, the device is made up of miniature fluidic chambers, which are covered on one side with nano-scale gold particles with surprising properties. "We cover the surface of the nanoparticles with, for example, antibodies, in order to make a specific protein or chemical stick to them," explains the researcher. "Once the solution containing the targeted elements is introduced into the chamber, the nanoparticles act as molecule catchers." This technique makes it possible to isolate the target molecules from the rest of the liquid.

But this is not the only role the nanoparticles play. They are also capable of concentrating light in nanometer-size volumes around their surface as a result of plasmonic resonance.

In the chamber, the beam doesn't need to pass through the whole solution. Instead, it is sent straight to the nanoparticle, which concentrates the light. Caught in the trap, the target molecules are the only ones that are so intensely exposed to the photons.

The reaction between the molecules and the infrared photons is extremely strong, which means they can be detected and observed very precisely. "This technique enables us to observe molecules in-situ as they react with elements in their natural environment. This could prove extremely useful for both medicine and biology," states Dr. Altug.

Use in medical research

Another advantage is that the chip is extremely compact and can be connected to microscopes already in use. "We don't need large sample sizes to conduct our analyses," says Ronen Adato.

Going forward, Hatice Altug intends to continue her research with a focus on medical applications. The first tests have been conducted with ordinary antibody molecules, and the analyses now need to be fine-tuned. "I'd really like to work with other life-science researchers, hospitals and biologists. I'm especially interested in using my method in the study of diseases, including cancer and neurological disorders, to observe the effect of certain medicines on diseased cells or to detect disease biomarkers, for example."

####

For more information, please click here

Contacts:
Pessina Laure-Anne

41-793-602-538

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Imaging

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Nanomedicine

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Discoveries

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Tools

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Water

Electricity generated with water, salt and a 3-atoms-thick membrane: EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Research partnerships

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic