Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Guided Growth of Nanowires Leads to Self-Integrated Circuits

SEM image of a logic circuit based on 14 nanowires
SEM image of a logic circuit based on 14 nanowires

Abstract:
Researchers working with tiny components in nanoelectronics face a challenge similar to that of parents of small children: teaching them to manage on their own. The nano-components are so small that arranging them with external tools is impossible. The only solution is to create conditions in which they can be "trusted" to assemble themselves.

Guided Growth of Nanowires Leads to Self-Integrated Circuits

Rehovot, Israel | Posted on July 31st, 2013

Much effort has gone into facilitating the self-assembly of semiconductor nanowires, the basic building blocks of electronics, but until recently, success has been limited. Scientists had developed methods for growing nanowires vertically on a surface, but the resultant structures were short and disorganized. After growing, such nanowires need to be "harvested" and aligned horizontally; since such placement is random, scientists need to determine their location and only then integrate them into electric circuits.

A team led by Prof. Ernesto Joselevich of the Weizmann Institute's Materials and Interfaces Department has managed to overcome these limitations. For the first time, the scientists have created self-integrating nanowires whose position, length and direction can be fully controlled.

The achievement, reported today in the Proceedings of the National Academy of Science (PNAS), USA, was based on a method developed by Joselevich two years ago for growing nanowires horizontally in an orderly manner. In the present study - conducted by Joselevich with Dr. Mark Schvartzman and David Tsivion of his lab, and Olga Raslin and Dr. Diana Mahalu of the Physics of Condensed Matter Department - the scientists went further, creating self-integrated electronic circuits from the nanowires.

First, the scientists prepared a surface with tiny, atom-sized grooves and then added to the middle of the grooves catalyst particles that served as nuclei for the growth of nanowires. This setup defined the position, length and direction of the nanowires. They then succeeded in creating a transistor from each nanowire on the surface, producing hundreds of such transistors simultaneously. The nanowires were also used to create a more complex electronic component - a functioning logic circuit called an Address Decoder, an essential constituent of computers. These ideas and findings have earned Joselevich a prestigious European Research Council Advanced Grant.

"Our method makes it possible, for the first time, to determine the arrangement of the nanowires in advance to suit the desired electronic circuit," Joselevich explains. The ability to efficiently produce circuits from self-integrating semiconductors opens the door to a variety of technological applications, including the development of improved LED devices, lasers and solar cells.

Prof. Ernesto Joselevich's research is supported by the Carolito Stiftung and the European Research Council.

####

About Weizmann Institute
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

For more information, please click here

Copyright © Weizmann Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project