Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Guided Growth of Nanowires Leads to Self-Integrated Circuits

SEM image of a logic circuit based on 14 nanowires
SEM image of a logic circuit based on 14 nanowires

Abstract:
Researchers working with tiny components in nanoelectronics face a challenge similar to that of parents of small children: teaching them to manage on their own. The nano-components are so small that arranging them with external tools is impossible. The only solution is to create conditions in which they can be "trusted" to assemble themselves.

Guided Growth of Nanowires Leads to Self-Integrated Circuits

Rehovot, Israel | Posted on July 31st, 2013

Much effort has gone into facilitating the self-assembly of semiconductor nanowires, the basic building blocks of electronics, but until recently, success has been limited. Scientists had developed methods for growing nanowires vertically on a surface, but the resultant structures were short and disorganized. After growing, such nanowires need to be "harvested" and aligned horizontally; since such placement is random, scientists need to determine their location and only then integrate them into electric circuits.

A team led by Prof. Ernesto Joselevich of the Weizmann Institute's Materials and Interfaces Department has managed to overcome these limitations. For the first time, the scientists have created self-integrating nanowires whose position, length and direction can be fully controlled.

The achievement, reported today in the Proceedings of the National Academy of Science (PNAS), USA, was based on a method developed by Joselevich two years ago for growing nanowires horizontally in an orderly manner. In the present study - conducted by Joselevich with Dr. Mark Schvartzman and David Tsivion of his lab, and Olga Raslin and Dr. Diana Mahalu of the Physics of Condensed Matter Department - the scientists went further, creating self-integrated electronic circuits from the nanowires.

First, the scientists prepared a surface with tiny, atom-sized grooves and then added to the middle of the grooves catalyst particles that served as nuclei for the growth of nanowires. This setup defined the position, length and direction of the nanowires. They then succeeded in creating a transistor from each nanowire on the surface, producing hundreds of such transistors simultaneously. The nanowires were also used to create a more complex electronic component - a functioning logic circuit called an Address Decoder, an essential constituent of computers. These ideas and findings have earned Joselevich a prestigious European Research Council Advanced Grant.

"Our method makes it possible, for the first time, to determine the arrangement of the nanowires in advance to suit the desired electronic circuit," Joselevich explains. The ability to efficiently produce circuits from self-integrating semiconductors opens the door to a variety of technological applications, including the development of improved LED devices, lasers and solar cells.

Prof. Ernesto Joselevich's research is supported by the Carolito Stiftung and the European Research Council.

####

About Weizmann Institute
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

For more information, please click here

Copyright © Weizmann Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Chip Technology

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Speed at its limits September 30th, 2014

Self Assembly

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Nanoelectronics

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Letiís 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Discoveries

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE