Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > More Efficient Solar Cells by Using Corn-like Nanowire

Abstract:
Iranian researchers from Sharif University of Technology in association with researchers from Cambridge University synthesized corn-like titanium dioxide nanowires and succeeded in improving the efficiency of dye-sensitized solar cells through light scattering management.

More Efficient Solar Cells by Using Corn-like Nanowire

Tehran, Iran | Posted on July 23rd, 2013

The structure improves the efficiency of solar cells due to its desirable properties in light scattering and also high rate of electron transference.

Amir Mahmoud Bakhshayesh, M.Sc. undergraduate in materials science and engineering from Sharif University of Technology, explained about the research. "The research was carried out to improve the efficiency of dye-sensitized solar cells through light scattering management, electron transference, and reducing the recombination. To this end, corn-like titanium dioxide nanowires were synthesized through hydrothermal/solvothermal methods, and were used as the light scattering layer in the dye-sensitized solar cells."

According to Bakhshayesh, the morphological synthesis of corn-like TiO2 nanowires through hydrothermal / solvothermal methods was the first stage in this research. He added, "After this stage, the deposition of the nanowire as the light scattering layer was carried out on a layer of nanoparticles on fluorine tin oxide (FTO) glass. Then, the montage of the solar cell of the dye-sensitized cell was carried out in the end."

The morphology of the synthesized nanowire enjoys appropriate ability to scatter light and to transfer electron.

"The synthesized nanowire contains a central nanowire. Titanium dioxide nanoparticles have grown on the surface of the central nanowire. The structure has a diameter of about 40-150 nanometers while its length is about 5-20 micrometers. The surface particles have a diameter of around 60 nanometers. Surface particles are in charge of the provision of the necessary specific area to adsorb pigment while the central nanowire is in charge of the creation of direct paths to inject electron," Bakhshayesh concluded.

Results of the research have been published on 15 February 2013 in Electrochimica Acta, vol. 90, pp. 302-308.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Energy

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Research partnerships

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Solar/Photovoltaic

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Perovskite solar technology shows quick energy returns: New technology beats current solar panel technology in life-cycle energy assessment July 20th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project