Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 2 in 1 solution for low cost polymer LEDs and solar cells: Affordable, simple yet high-performance PLEDs and PSCs are here soon

Abstract:
Considerable improvement in device performance of polymer-based optoelectronic devices is reported today by researchers from Ulsan National Institute of Science and Technology (UNIST), South Korea. The new plasmonic material, can be applied to both polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs), with world-record high performance, through a simple and cheap process.

2 in 1 solution for low cost polymer LEDs and solar cells: Affordable, simple yet high-performance PLEDs and PSCs are here soon

Ulsan, South Korea | Posted on July 22nd, 2013

The contrary demands of these devices mean that there are few metal nanoparticles that can enhance performance in PLEDs and PSCs at the same time.



Most semiconducting optoelectronic devices (OEDs), including photodiodes, solar cells, light emitting diodes (LEDs), and semiconductor lasers, are based on inorganic materials. Examples include gallium nitride for light-emitting diodes and silicon for solar cells.



Due to the limited availability of raw materials and the complex processing required to manufacture OEDs based on inorganic materials, the cost of device fabrication is increasing. There is great interest in thin-film OEDs that are made from alternative semiconductors.



Among these materials, organic semiconductors have received much attention for use in next-generation OEDs because of the potential for low-cost and large-area fabrication using solution processing.



Despite extensive efforts to develop new materials and device architectures enhancing the performance of these devices, further improvements in efficiency are needed, before there can be widespread use and commercialization of these technologies.



The material prepared by the UNIST research team is easy to synthesize with basic equipment and has low-temperature solution processability. This low-temperature solution processability enables roll-to-roll mass production techniques and is suitable for printed electronic devices.



"Our work is significant also because it anticipates the realization of electrically driven laser devices by utilizing carbon dot*-supported silver nanoparticles (CD-Ag NPs) as plasmonic materials." says said Prof. Byeong-Su Kim. "The material allows significant radiative emission and additional light absorption, leading to remarkably enhanced current efficiency."



Surface Plasmon resonance is an electro-magnetic wave propagating along the surface of a thin metal layer and the collective oscillation of electrons in a solid or liquid stimulated by incident light. SPR is the basis of many standard tools for measuring adsorption of materials onto planar metal (typically gold and silver) surfaces or onto the surface of metal nanoparticles.



The team demonstrated efficient PLEDs and PSCs using surface Plasmon resonance enhancement with CD-Ag NPs. The PLEDs achieved a remarkably high current efficiency (from 11.65 to 27.16 cd A-1) and luminous efficiency (LE) (from 6.33 to 18.54 lm W-1).



PSCs produced in this way showed enhanced power conversion efficiency (PCE) (from 7.53 to 8.31%) and internal quantum efficiency (IQE) (from 91 to 99% at 460 nm). The LE (18.54 lm W-1) and IQE (99%) are among the highest values reported to date in fluorescent PLEDs and PSCs, respectively.



"These significant improvements in device efficiency demonstrate that surface Plasmon resonance materials constitute a versatile and effective route for achieving high performance polymer LEDs and polymer solar cells," said Prof. Jin Young Kim. "This approach shows promise as a route for the realization of electrically driven polymer lasers."



The fellow researchers include Hyosung Choi, Seo-Jin Ko, Yuri Choi, Taehyo Kim, Boram Lee, and Prof. Myung Hoon Song from UNIST, and researchers from Chungnam National University, Pusan National University, and Gwangju Institute of Science and Technology.



This research was supported by a WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology, the National Research Foundation of Korea Grant, the Korea Healthcare technology R&D Project, the Ministry of Health & Welfare, Korea and the International Cooperation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Knowledge Economy.

*Carbon-dot: Carbon dots (CDs) consist of carbon, hydrogen, and oxygen with a quasi-spherical structure in which the carbon shows the character of crystalline graphite.

The full article is: Enclosed is our manuscript entitled, "Surface plasmon resonance of carbon dot-supported silver nanoparticles: Versatility in polymer optoelectronic devices". Nature Photonics. DOI: 10.1038/nphoton.2013.181

####

For more information, please click here

Contacts:
Eunhee Song

82-522-171-224

Copyright © Ulsan National Institute of Science and Technology(UNIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Homepage of Prof. Jin Young Kim:

Homepage of Prof. Byeong-Su Kim:

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Display technology/LEDs/SS Lighting/OLEDs

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

JunPus launched high-performance thermal grease for LED February 20th, 2015

Thin films

Researchers enable solar cells to use more sunlight February 25th, 2015

Detecting defects at the nanoscale will profit solar panel production: Researcher Mohamed Elrawemi develops new technologies for defects in thin films, vital in products as printed electronics and solar panels February 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Discoveries

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Photonics/Optics/Lasers

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Solar/Photovoltaic

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

Printing/Lithography/Inkjet/Inks

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

3-D printing with custom molecules creates low-cost mechanical sensor February 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE