Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Magnets make droplets dance

Static self-assembly of seven magnetic droplets on a copper substrate with superhydrophobic coating.
Static self-assembly of seven magnetic droplets on a copper substrate with superhydrophobic coating.

Abstract:
This is the first time researchers have demonstrated reversible switching between static and dynamic self-assembly.

Researchers from Aalto University and Paris Tech have placed water droplets containing magnetic nanoparticles on strong water repellent surfaces and have made them align in various static and dynamic structures using periodically oscillating magnetic fields. This is the first time researchers have demonstrated reversible switching between static and dynamic self-assembly.



Video 1: Magnetically triggered droplet splitting on a superhydrophobic surface



Video 2: Self-assembly of magnetic droplets on a superhydrophobic surface



Video 3: Reversible switching between static and dynamic self-assembly of magnetic droplets

Magnets make droplets dance

Aalto, Finland | Posted on July 22nd, 2013

"We are conducting this line of research because it opens up a way to create new responsive and intelligent systems and materials," said Dr. Robin Ras of Aalto University.

Self-assembly is a process in which multiple components form organized structures or patterns without external direction. The process is very interesting both for scientists and industry, because many natural systems rely on self-assembled structures and they can further inspire technological applications.

"The structure formation can either be static, driven by energy minimization, or dynamic, driven by continuous energy feed. Over the years we have managed to create functional materials based on static self-assembled hierarchies. This model system paves the way towards even more versatile dynamic materials, wherein the structures are formed by feeding energy," said Academy Professor Olli Ikkala.

By using the new model system, the researchers demonstrated that static droplet patterns can transform reversibly into dynamic ones when energy is fed to the system via an oscillating magnetic field. The transition was observed to be complex and the most complicated patterns emerged when the energy feed was just enough to enter the dynamic self-assembly regime.

In addition to the hard science behind the self-assembly, the droplet patterns are also visually captivating.

"In some patterns, the motion of the droplets resembles that of dancing. We find it simply beautiful," said Dr. Jaakko Timonen.

This work is part of the newly completed doctoral thesis of Jaakko Timonen at the Aalto University Department of Applied Physics. It is a multidisciplinary research, combining expertize in magnetic nanoparticle synthesis, superhydrophobic surfaces, and in-depth understanding of self-assemblies.

"Jaakko Timonen´s broad expertize was instrumental in combining three seemingly unrelated fields: magnetic nanoparticles water repellent coatings, and self-assembly," said Dr. Ras.

####

For more information, please click here

Contacts:
Dr. Robin Ras

358-504-326-633

Academy Professor Olli Ikkala

+358 50 4100454

Aalto University School of Science
Department of Applied Physics

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results were published in Science on July 19, entitled “Switchable Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic Surfaces”. (sciencemag.org):

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Videos/Movies

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

New particle-sorting method breaks speed records: Discovery could lead to new ways of detecting cancer cells or purifying contaminated water July 1st, 2014

Self Assembly

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Design of self-assembling protein nanomachines starts to click: A nanocage builds itself from engineered components June 5th, 2014

Molecular self-assembly scales up from nanometers to millimeters June 5th, 2014

Nano world: Where towers construct themselves: How physicists get control on the self-assembly process June 2nd, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Materials/Metamaterials

Flexible Metamaterial Absorbers July 29th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

ACS Biomaterials Science & Engineering™: Brand-new journal names editor July 29th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE