Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Magnets make droplets dance

Static self-assembly of seven magnetic droplets on a copper substrate with superhydrophobic coating.
Static self-assembly of seven magnetic droplets on a copper substrate with superhydrophobic coating.

Abstract:
This is the first time researchers have demonstrated reversible switching between static and dynamic self-assembly.

Researchers from Aalto University and Paris Tech have placed water droplets containing magnetic nanoparticles on strong water repellent surfaces and have made them align in various static and dynamic structures using periodically oscillating magnetic fields. This is the first time researchers have demonstrated reversible switching between static and dynamic self-assembly.



Video 1: Magnetically triggered droplet splitting on a superhydrophobic surface



Video 2: Self-assembly of magnetic droplets on a superhydrophobic surface



Video 3: Reversible switching between static and dynamic self-assembly of magnetic droplets

Magnets make droplets dance

Aalto, Finland | Posted on July 22nd, 2013

"We are conducting this line of research because it opens up a way to create new responsive and intelligent systems and materials," said Dr. Robin Ras of Aalto University.

Self-assembly is a process in which multiple components form organized structures or patterns without external direction. The process is very interesting both for scientists and industry, because many natural systems rely on self-assembled structures and they can further inspire technological applications.

"The structure formation can either be static, driven by energy minimization, or dynamic, driven by continuous energy feed. Over the years we have managed to create functional materials based on static self-assembled hierarchies. This model system paves the way towards even more versatile dynamic materials, wherein the structures are formed by feeding energy," said Academy Professor Olli Ikkala.

By using the new model system, the researchers demonstrated that static droplet patterns can transform reversibly into dynamic ones when energy is fed to the system via an oscillating magnetic field. The transition was observed to be complex and the most complicated patterns emerged when the energy feed was just enough to enter the dynamic self-assembly regime.

In addition to the hard science behind the self-assembly, the droplet patterns are also visually captivating.

"In some patterns, the motion of the droplets resembles that of dancing. We find it simply beautiful," said Dr. Jaakko Timonen.

This work is part of the newly completed doctoral thesis of Jaakko Timonen at the Aalto University Department of Applied Physics. It is a multidisciplinary research, combining expertize in magnetic nanoparticle synthesis, superhydrophobic surfaces, and in-depth understanding of self-assemblies.

"Jaakko Timonen´s broad expertize was instrumental in combining three seemingly unrelated fields: magnetic nanoparticles water repellent coatings, and self-assembly," said Dr. Ras.

####

For more information, please click here

Contacts:
Dr. Robin Ras

358-504-326-633

Academy Professor Olli Ikkala

+358 50 4100454

Aalto University School of Science
Department of Applied Physics

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results were published in Science on July 19, entitled “Switchable Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic Surfaces”. (sciencemag.org):

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Videos/Movies

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

KEEP CALM and PUBLISH PAPERS – a new video blog with graphic tutorials to scientific publishing April 7th, 2014

Self Assembly

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Cypress’s TrueTouch® Touchscreen Controllers Compatible with Cima NanoTech’s SANTE® Silver Nanoparticle-Based Touch Sensors: Supporting Designs for Advanced Touch Applications March 5th, 2014

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes March 1st, 2014

A potentially revolutionnary material: Scientists produce a novel form of artificial graphene February 15th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Materials/Metamaterials

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Thinnest feasible membrane produced April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE