Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Magnets make droplets dance

Static self-assembly of seven magnetic droplets on a copper substrate with superhydrophobic coating.
Static self-assembly of seven magnetic droplets on a copper substrate with superhydrophobic coating.

Abstract:
This is the first time researchers have demonstrated reversible switching between static and dynamic self-assembly.

Researchers from Aalto University and Paris Tech have placed water droplets containing magnetic nanoparticles on strong water repellent surfaces and have made them align in various static and dynamic structures using periodically oscillating magnetic fields. This is the first time researchers have demonstrated reversible switching between static and dynamic self-assembly.



Video 1: Magnetically triggered droplet splitting on a superhydrophobic surface



Video 2: Self-assembly of magnetic droplets on a superhydrophobic surface



Video 3: Reversible switching between static and dynamic self-assembly of magnetic droplets

Magnets make droplets dance

Aalto, Finland | Posted on July 22nd, 2013

"We are conducting this line of research because it opens up a way to create new responsive and intelligent systems and materials," said Dr. Robin Ras of Aalto University.

Self-assembly is a process in which multiple components form organized structures or patterns without external direction. The process is very interesting both for scientists and industry, because many natural systems rely on self-assembled structures and they can further inspire technological applications.

"The structure formation can either be static, driven by energy minimization, or dynamic, driven by continuous energy feed. Over the years we have managed to create functional materials based on static self-assembled hierarchies. This model system paves the way towards even more versatile dynamic materials, wherein the structures are formed by feeding energy," said Academy Professor Olli Ikkala.

By using the new model system, the researchers demonstrated that static droplet patterns can transform reversibly into dynamic ones when energy is fed to the system via an oscillating magnetic field. The transition was observed to be complex and the most complicated patterns emerged when the energy feed was just enough to enter the dynamic self-assembly regime.

In addition to the hard science behind the self-assembly, the droplet patterns are also visually captivating.

"In some patterns, the motion of the droplets resembles that of dancing. We find it simply beautiful," said Dr. Jaakko Timonen.

This work is part of the newly completed doctoral thesis of Jaakko Timonen at the Aalto University Department of Applied Physics. It is a multidisciplinary research, combining expertize in magnetic nanoparticle synthesis, superhydrophobic surfaces, and in-depth understanding of self-assemblies.

"Jaakko Timonen´s broad expertize was instrumental in combining three seemingly unrelated fields: magnetic nanoparticles water repellent coatings, and self-assembly," said Dr. Ras.

####

For more information, please click here

Contacts:
Dr. Robin Ras

358-504-326-633

Academy Professor Olli Ikkala

+358 50 4100454

Aalto University School of Science
Department of Applied Physics

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results were published in Science on July 19, entitled “Switchable Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic Surfaces”. (sciencemag.org):

Related News Press

News and information

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Videos/Movies

Researchers develop new way to manufacture nanofibers May 21st, 2015

Artificial photosynthesis: New, stable photocathode with great potential May 12th, 2015

Precision Automation Actuator Features Closed-Loop Force and Position Control May 7th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Self Assembly

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Materials/Metamaterials

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Announcements

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project