Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Build 3-D Structures Out of Liquid Metal

Researchers have developed three-dimensional structures out of liquid metal. Image: Michael Dickey.
Researchers have developed three-dimensional structures out of liquid metal.

Image: Michael Dickey.

Abstract:
"3-D Printing of Free Standing Liquid Metal Microstructures"

Authors: Collin Ladd, Ju-Hee So, John Muth and Michael D. Dickey, North Carolina State University

Published: Online July 4 in Advanced Materials

DOI: 10.1002/adma.201301400

Abstract: This paper describes a method to direct-write liquid metal microcomponents at room temperature. 3-D printing is gaining popularity for rapid prototyping and patterning. Most 3-D printers extrude molten polymer that quickly cools and solidifies. The ability to pattern liquids into arbitrary shapes both in and out of plane is usually limited by interfacial tension. A classic example is the break-up of cylinders of liquid into droplets when the aspect ratio of the cylinder exceeds the Rayleigh stability limit of [pi]. Here, we show it is possible to direct-write a low viscosity liquid metal at room temperature into a variety of stable free-standing 3-D microstructures (cylinders with aspect ratios significantly beyond the Rayleigh stability limit, 3-D arrays of droplets, out of plane arches, wires). A thin (~ 1 nm thick), passivating oxide skin forms rapidly on the surface of the liquid metal and stabilizes the microstructures despite the low viscosity and large surface energy of the liquid. The ability to directly print metals with liquid-like properties is important for soft, stretchable, and shape reconfigurable analogs to wires, electrical interconnects, electrodes, antennas, meta-materials, and optical materials.

Researchers Build 3-D Structures Out of Liquid Metal

Raleigh, NC | Posted on July 9th, 2013

Researchers from North Carolina State University have developed three-dimensional (3-D) printing technology and techniques to create free-standing structures made of liquid metal at room temperature.

"It's difficult to create structures out of liquids, because liquids want to bead up. But we've found that a liquid metal alloy of gallium and indium reacts to the oxygen in the air at room temperature to form a Ďskin' that allows the liquid metal structures to retain their shapes," says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing the work.

The researchers developed multiple techniques for creating these structures, which can be used to connect electronic components in three dimensions. White it is relatively straightforward to pattern the metal "in plane" - meaning all on the same level - these liquid metal structures can also form shapes that reach up or down.

One technique involves stacking droplets of liquid metal on top of each other, much like a stack of oranges at the supermarket. The droplets adhere to one another, but retain their shape - they do not merge into a single, larger droplet. Video of the process is available here.

Another technique injects liquid metal into a polymer template, so that the metal takes on a specific shape. The template is then dissolved, leaving the bare, liquid metal in the desired shape. The researchers also developed techniques for creating liquid metal wires, which retain their shape even when held perpendicular to the substrate.

Dickey's team is currently exploring how to further develop these techniques, as well as how to use them in various electronics applications and in conjunction with established 3-D printing technologies.

"I'd also like to note that the work by an undergraduate, Collin Ladd, was indispensable to this project," Dickey says. "He helped develop the concept, and literally created some of this technology out of spare parts he found himself."

The work was supported by a National Science Foundation CAREER award and the National Science Foundation's ASSIST Engineering Research Center at NC State.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Michael Dickey

919.513.0273

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, ď3-D Printing of Free Standing Liquid Metal Microstructures,Ē is published online in Advanced Materials. Ladd, a recent NC State graduate, is lead author. Co-authors are Dickey; former NC State Ph.D. student Dr. Ju-Hee So; and Dr. John Muth, a professor of electrical and computer engineering at NC State.

Related News Press

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Videos/Movies

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

3D printing/Additive-manufacturing

3-D-printed jars in ball-milling experiments June 29th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Erasable ink for 3-D printing: Laser-written three-dimensional microstructures can be erased and rewritten, if desired -- very important paper publication in Angewandte Chemie May 2nd, 2017

Nanoengineers 3-D print biomimetic blood vessel networks March 6th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Materials/Metamaterials

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project