Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec shows multiple enhancement options for next-generation FinFETs: Leading nano-electronics R&D center addresses key challenges of Germanium finFET technology at VLSI 2013

Abstract:
At this week's VLSI 2013 Symposium in Kyoto, Japan, imec highlighted new insights into 3D fin shaped field effect transistors (FinFETs) and high mobility channels scaling for the 7nm and 5nm technology node.

Imec shows multiple enhancement options for next-generation FinFETs: Leading nano-electronics R&D center addresses key challenges of Germanium finFET technology at VLSI 2013

Leuven, Belgium | Posted on June 14th, 2013

At the VLSI 2013 symposium, imec presented the first strained Germanium devices based on a Si-replacement process, where a Ge/SiGe quantum-well heterostructure is grown by epitaxially replacing a conventional Si-based shallow trench isolation (STI). The technique allows for highly-versatile means of heterogeneous material integration with Si, ultimately leading the way to future heterogeneous FinFET/nanowire devices. The device shows dramatically superior gate reliability (NBTI) over Si channel devices due to a unique energy band structure of the compressively-strained Ge channel.

According to Aaron Thean, logic devices program director at imec: "We are facing significant challenges to scale the MOSFET architecture towards 7nm and 5nm. Besides dimension scaling, enhancing the device performance, in the face of rising parasitics and power, is a major focus of the logic device research at imec. Among the key activities are R&D efforts investigating both high-mobility channel material and new methods of enhancing Si-based FinFET."

With options to introduce heterostructure into next-generation FinFET, quantum-well channels based on a combination of materials that enhance both mobility and electrostatics, can be engineered. At VLSI 2013, imec also presented comprehensive simulation work that investigated material combinations of Si, SiGe, Ge and III-V channels to enhance device electrostatics, providing important process guidance to extend FinFET scalability.

Moreover, imec presented novel highly scalable engineering approaches to tune gate workfunction and improve mobility, noise and reliability in Si nMOS finFETs. The impact on the performance of layout-induced stress effects in scaled finFETs and the impact of random telegraph noise (RTN) fluctuation in lowly doped devices was shown.

Imec's research into next-generation finFETs is performed in cooperation with imec's key partners in its core CMOS programs including GLOBALFOUNDRIES, INTEL, Micron, Panasonic, Samsung, TSMC, Elpida, SK hynix, Fujitsu and Sony.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of more than 2,000 people includes more than 650 industrial residents and guest researchers. In 2012, imec's revenue (P&L) totaled 320 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile : +32 486 06 51 75

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Chip Technology

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Nanoelectronics

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Non-toxic filamentous virus helps quickly dissipate heat generated by electronic devices April 4th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Announcements

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Events/Classes

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project