Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers enlist Cameca Nanosims Microprobe to determine origins of lunar water: Microprobes's results indicate water on Earth and Moon has similar origin

Abstract:
A research team made up of scientists from Brown University, the Carnegie Institution for Science, and Case Western Reserve University has determined from lunar samples brought back by the Apollo 15 and 17 Moon missions that water from the interiors of the Earth and the Moon has a common origin.

Researchers enlist Cameca Nanosims Microprobe to determine origins of lunar water: Microprobes's results indicate water on Earth and Moon has similar origin

Cedex, France | Posted on June 4th, 2013

The team examined melt inclusions found in the lunar rock samples. Melt inclusions are tiny dots of volcanic glass trapped within rock crystals that prevent water from escaping during eruptions. They provide a unique snapshot of the Moon's interior composition.

Team members at the Carnegie Institution in Washington relied on a CAMECA NanoSIMS 50L multicollector ion microprobe to measure the amount of deuterium, a hydrogen isotope that is found in varying amounts in water depending upon where the water molecules originated in the solar system.

The team's measurements revealed that the hydrogen isotopes in the lunar rock originate in a type of meteorite called carbonaceous chondrites that match the Earth's water suggesting that the two celestial bodies obtained their water from the same source.

Similar measurements were made previously by a research team consisting of scientists from UCLA, the University of Tennessee, Wesleyan University and Hokkaido University (Japan) using a CAMECA IMS 1280 ultra-high sensitivity ion microprobe.

This team also identified water and characterized the hydrogen/ deuterium isotopic composition in lunar rocks. Its results suggested other sources for water in lunar rocks, including lunar mantle, solar wind protons and comets.

Current scientific theory proposes that the Moon was formed from a massive disc of debris that resulted when a Mars-sized object hit the Earth 4.5 billion years ago. Although heat from the impact should have caused hydrogen and other volatile elements to boil off into space, evidence now suggests that the Earth was already wet at the time of the Moon-forming impact and that the water within the Moon was inherited from the Earth.

"The measurements themselves were very difficult, but the new data provide the best evidence yet that the carbonaceous chondrite meteorites were a common source for the water in the Earth and Moon, and perhaps the entire inner solar system," notes Erik Hauri of the Carnegie Institution.
CAMECA's NanoSIMS 50L ion microprobe proved uniquely capable of analyzing lunar melt inclusions. It offered the research team several key performance features that no other single instrument could provide. These include high spatial resolution (down to 50 nanometers), high sensitivity for all elements from hydrogen to uranium and above (parts per million in elemental imaging), high mass resolution, and parallel acquisition of up to seven elements or isotopes.

####

About CAMECA
CAMECA has more than 50 years of experience in the design, manufacture and servicing of scientific instruments for material micro- and nano-analysis. Since pioneering Electron Probe Microanalysis (EPMA) instrumentation in the 1950s and Secondary Ion Mass Spectrometry (SIMS) in the 1960s, CAMECA has remained an undisputed world leader, while achieving numerous breakthrough innovations in such complementary techniques as Low-energy Electron-induced X-ray Emission Spectrometry (LEXES) and Atom Probe Tomography.

More recently CAMECA has successfully evolved from a manufacturer of scientific instrumentation for the international research community to a provider of metrology solutions for the semiconductor industry. Headquartered near Paris, CAMECA has offices in China, Germany, India, Japan, Korea, Russia, Taiwan and the United States along with a global network of agents. It is a unit of the Materials Analysis Division of AMETEK, Inc., a leading global manufacturer of electronic instrument and electromechanical products.

For more information, please click here

Contacts:
Francois Horreard
+33 1 43 34 62 48

Copyright © CAMECA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Announcements

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Tools

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Water

Nano-level lubricant tuning improves material for electronic devices and surface coatings February 11th, 2017

Tough aqua material for water purification: Decontamination of water with a robust and sustainable membrane assembled from 2 synergistically working components January 24th, 2017

Scientists have discovered a new state of matter for water January 2nd, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Aerospace/Space

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

New method improves accuracy of imaging systems February 8th, 2017

National Space Society's Space Settlement Summit Draws Industry Leaders February 4th, 2017

Research partnerships

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project