Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Even with Defects, Graphene is Strongest Material in the World: New Study Reveals Strength of CVD Graphene

Abstract:
In a new study, published in Science May 31, 2013, Columbia Engineering researchers demonstrate that graphene, even if stitched together from many small crystalline grains, is almost as strong as graphene in its perfect crystalline form. This work resolves a contradiction between theoretical simulations, which predicted that grain boundaries can be strong, and earlier experiments, which indicated that they were much weaker than the perfect lattice.

Even with Defects, Graphene is Strongest Material in the World: New Study Reveals Strength of CVD Graphene

New York, NY | Posted on May 31st, 2013

Graphene consists of a single atomic layer of carbon, arranged in a honeycomb lattice. "Our first Science paper, in 2008, studied the strength graphene can achieve if it has no defects—its intrinsic strength," says James Hone, professor of mechanical engineering, who led the study with Jeffrey Kysar, professor of mechanical engineering. "But defect-free, pristine graphene exists only in very small areas. Large-area sheets required for applications must contain many small grains connected at grain boundaries, and it was unclear how strong those grain boundaries were. This, our second Science paper, reports on the strength of large-area graphene films grown using chemical vapor deposition (CVD), and we're excited to say that graphene is back and stronger than ever."

The study verifies that commonly used methods for post-processing CVD-grown graphene weaken grain boundaries, resulting in the extremely low strength seen in previous studies. The Columbia Engineering team developed a new process that prevents any damage of graphene during transfer. "We substituted a different etchant and were able to create test samples without harming the graphene," notes the paper's lead author, Gwan-Hyoung Lee, a postdoctoral fellow in the Hone lab. "Our findings clearly correct the mistaken consensus that grain boundaries of graphene are weak. This is great news because graphene offers such a plethora of opportunities both for fundamental scientific research and industrial applications."

In its perfect crystalline form, graphene (a one-atom-thick carbon layer) is the strongest material ever measured, as the Columbia Engineering team reported in Science in 2008—so strong that, as Hone observed, "it would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap." For the first study, the team obtained small, structurally perfect flakes of graphene by mechanical exfoliation, or mechanical peeling, from a crystal of graphite. But exfoliation is a time-consuming process that will never be practical for any of the many potential applications of graphene that require industrial mass production.

Currently, scientists can grow sheets of graphene as large as a television screen by using chemical vapor deposition (CVD), in which single layers of graphene are grown on copper substrates in a high-temperature furnace. One of the first applications of graphene may be as a conducting layer in flexible displays.

"But CVD graphene is ‘stitched' together from many small crystalline grains—like a quilt—at grain boundaries that contain defects in the atomic structure," Kysar explains. "These grain boundaries can severely limit the strength of large-area graphene if they break much more easily than the perfect crystal lattice, and so there has been intense interest in understanding how strong they can be."

The Columbia Engineering team wanted to discover what was making CVD graphene so weak. In studying the processing techniques used to create their samples for testing, they found that the chemical most commonly used to remove the copper substrate also causes damage to the graphene, severely degrading its strength.

Their experiments demonstrated that CVD graphene with large grains is exactly as strong as exfoliated graphene, showing that its crystal lattice is just as perfect. And, more surprisingly, their experiments also showed that CVD graphene with small grains, even when tested right at a grain boundary, is about 90% as strong as the ideal crystal.

"This is an exciting result for the future of graphene, because it provides experimental evidence that the exceptional strength it possesses at the atomic scale can persist all the way up to samples inches or more in size," says Hone. "This strength will be invaluable as scientists continue to develop new flexible electronics and ultrastrong composite materials."

Strong, large-area graphene can be used for a wide variety of applications such as flexible electronics and strengthening components—potentially, a television screen that rolls up like a poster or ultrastrong composites that could replace carbon fiber. Or, the researchers speculate, a science fiction idea of a space elevator that could connect an orbiting satellite to Earth by a long cord that might consist of sheets of CVD graphene, since graphene (and its cousin material, carbon nanotubes) is the only material with the high strength-to-weight ratio required for this kind of hypothetical application.

The team is also excited about studying 2D materials like graphene. "Very little is known about the effects of grain boundaries in 2D materials," Kysar adds. "Our work shows that grain boundaries in 2D materials can be much more sensitive to processing than in 3D materials. This is due to all the atoms in graphene being surface atoms, so surface damage that would normally not degrade the strength of 3D materials can completely destroy the strength of 2D materials. However with appropriate processing that avoids surface damage, grain boundaries in 2D materials, especially graphene, can be nearly as strong as the perfect, defect-free structure."

The study was supported by grants from the Air Force Office of Scientific Research and the National Science Foundation.

####

About Columbia Engineering
Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world’s leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society’s more difficult challenges

For more information, please click here

Contacts:
Holly Evarts
Director
Strategic Communications and Media Relations
212-854-3206 (o)
347-453-7408 (c)

Copyright © Columbia Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Graphene

Two-dimensional semiconductor comes clean April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Display technology/LEDs/SS Lighting/OLEDs

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Nature: Low-reflection wings make butterflies nearly invisible: Irregular nanostructures on the transparent wing of the glasswing butterfly prevent the reflection of light -- publication in Nature Communications -- researchers plan applications April 23rd, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Flexible Electronics

Printing Silicon on Paper, with Lasers April 21st, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Discoveries

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Materials/Metamaterials

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Military

Two-dimensional semiconductor comes clean April 27th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project