Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Gold nanocrystal vibration captured on billion-frames-per-second film

The acoustic phonons can be visualized on the surface as regions of contraction (blue) and expansion (red). Also shown are two-dimensional images comparing the experimental results with theory and molecular dynamics simulation. The scale bar is 100 nanometers.

Credit: Jesse Clark/UCL
The acoustic phonons can be visualized on the surface as regions of contraction (blue) and expansion (red). Also shown are two-dimensional images comparing the experimental results with theory and molecular dynamics simulation. The scale bar is 100 nanometers.

Credit: Jesse Clark/UCL

Abstract:
A billon-frames-per-second film has captured the vibrations of gold nanocrystals in stunning detail for the first time.

Gold nanocrystal vibration captured on billion-frames-per-second film

London, UK | Posted on May 23rd, 2013

The film, which was made using 3D imaging pioneered at the London Centre for Nanotechnology (LCN) at UCL, reveals important information about the composition of gold. The findings are published in the journal Science.

Jesse Clark, from the LCN and lead author of the paper said: "Just as the sound quality of a musical instrument can provide great detail about its construction, so too can the vibrations seen in materials provide important information about their composition and functions."

"It is absolutely amazing that we are able to capture snapshots of these nanoscale motions and create movies of these processes. This information is crucial to understanding the response of materials after perturbation. "

Scientists found that the vibrations were unusual because they start off at exactly the same moment everywhere inside the crystal. It was previously expected that the effects of the excitation would travel across the gold nanocrystal at the speed of sound, but they were found to be much faster, i.e., supersonic.

The new images support theoretical models for light interaction with metals, where energy is first transferred to electrons, which are able to short-circuit the much slower motion of the atoms.

The team carried out the experiments at the SLAC National Accelerator Laboratory using a revolutionary X-ray laser called the "Linac Coherent Light Source". The pulses of X-rays are extremely short (measured in femtoseconds, or quadrillionths of a second), meaning they are able to freeze all motion of the atoms in any sample, leaving only the electrons still moving.

However, the X-ray pulses are intense enough that the team was able to take single snapshots of the vibrations of the gold nanocrystals they were examining. The vibration was started with a short pulse of infrared light.

The vibrations were imaged a short time later in 3D using the coherent diffraction imaging methods pioneered in LCN by the Robinson group. The 3D movies reveal in exquisite detail the distortions taking place within the nanocrystal, with the fastest vibrations repeating every 90 picoseconds.

Professor Robinson, also from the LCN and the group leader, said: "This work represents an impressive example of teamwork by about a hundred people at SLAC. The SLAC linear accelerator was built in 1957 in direct response to the news of Sputnik.

"After compelling 50 years of sensational high energy physics, that machine has been refitted as a laser by the addition of a 100m long array of magnets. This 3km-sized machine produces a beam which is focused onto a crystal smaller than a micron in a pulse so short that all motion of its atoms is frozen still."

The research team included contributors from UCL, University of Oxford, SLAC, Argonne National Laboratory and LaTrobe University, Australia.

####

About University College London
Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine.

We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world.

UCL has nearly 25,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million.

www.ucl.ac.uk | Follow us on Twitter @uclnews | Watch our YouTube channel YouTube.com/UCLTV

About the London Centre for Nanotechnology

The London Centre for Nanotechnology is a UK-based multidisciplinary enterprise operating at the forefront of science and technology. Its purpose is to solve global problems in information processing, healthcare, energy and environment through the application of nanoscience and nanotechnology. Founded in 2003, the LCN is a joint venture between UCL (University College London) and Imperial College London. www.london-nano.com

About the Stanford Linear Accelerator Center (SLAC)

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy (DOE) Office of Science. To learn more, please visit www.slac.stanford.edu

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit www.science.energy.gov.

For more information, please click here

Contacts:
Clare Ryan

44-020-310-83846

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

Imaging

The nanoscopic structure that locks up our genes January 16th, 2018

Silver nanoparticles take spectroscopy to new dimension: A new way of organizing nanostructures has boosted Raman signals by a hundred thousand times to better identify and characterize different molecules January 2nd, 2018

Laboratories

Laboratory Management Web Application Goes Nationwide January 9th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Discoveries

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Materials/Metamaterials

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Announcements

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Tools

The nanoscopic structure that locks up our genes January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Silver nanoparticles take spectroscopy to new dimension: A new way of organizing nanostructures has boosted Raman signals by a hundred thousand times to better identify and characterize different molecules January 2nd, 2018

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Photonics/Optics/Lasers

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Ocean Optics Grows Sales Organization with Executive Appointments: Henry Langston promoted, Christine Stannard joins spectral sensing product developer December 23rd, 2017

Research partnerships

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Study resolves controversy about electron structure of defects in graphene December 21st, 2017

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project