Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Kinks and curves at the nanoscale: New research shows 'perfect twin boundaries' are not so perfect

Since 2004, materials scientists and nanotechnologists have been excited about a special of arrangement of atoms called a "coherent twin boundary" that can add strength and other advantages to metals like gold and copper. The CTB's are often described as "perfect," appearing like a one-atom-thick perfectly-flat plane in models and images. New research at the University of Vermont and Lawrence Livermore National Laboratory shows that these boundaries are not so perfect after all. Even more surprising, the newly discovered kinks and defects appear to be the cause of the CTB's strength.This image shows a simulation of atoms in a coherent twin boundary (shown in red) in copper. The newly discovered "kink" defects appear as green step-like structures and folds in the red areas. The red twin boundaries extend between columns of green atoms which represent grain boundaries within the copper.

Credit: Frederic Sansoz, University of Vermont
Since 2004, materials scientists and nanotechnologists have been excited about a special of arrangement of atoms called a "coherent twin boundary" that can add strength and other advantages to metals like gold and copper. The CTB's are often described as "perfect," appearing like a one-atom-thick perfectly-flat plane in models and images. New research at the University of Vermont and Lawrence Livermore National Laboratory shows that these boundaries are not so perfect after all. Even more surprising, the newly discovered kinks and defects appear to be the cause of the CTB's strength.This image shows a simulation of atoms in a coherent twin boundary (shown in red) in copper. The newly discovered "kink" defects appear as green step-like structures and folds in the red areas. The red twin boundaries extend between columns of green atoms which represent grain boundaries within the copper.

Credit: Frederic Sansoz, University of Vermont

Abstract:
One of the basic principles of nanotechnology is that when you make things extremely small—one nanometer is about five atoms wide, 100,000 times smaller than the diameter of a human hair—they are going to become more perfect.

Kinks and curves at the nanoscale: New research shows 'perfect twin boundaries' are not so perfect

Burlington, VT | Posted on May 20th, 2013

"Perfect in the sense that their arrangement of atoms in the real world will become more like an idealized model," says University of Vermont engineer Frederic Sansoz, "with smaller crystals—in for example, gold or copper—it's easier to have fewer defects in them."

And eliminating the defects at the interface separating two crystals, or grains, has been shown by nanotechnology experts to be a powerful strategy for making materials stronger, more easily molded, and less electrically resistant—or a host of other qualities sought by designers and manufacturers.

Since 2004, when a seminal paper came out in Science, materials scientists have been excited about one special of arrangement of atoms in metals and other materials called a "coherent twin boundary" or CTB.

Based on theory and experiment, these coherent twin boundaries are often described as "perfect," appearing like a perfectly flat, one-atom-thick plane in computer models and electron microscope images.

Over the last decade, a body of literature has shown these coherent twin boundaries—found at the nanoscale within the crystalline structure of common metals like gold, silver and copper—are highly effective at making materials much stronger while maintaining their ability to undergo permanent change in shape without breaking and still allowing easy transmission of electrons—an important fact for computer manufacturing and other electronics applications.

But new research now shows that coherent twin boundaries are not so perfect after all.

A team of scientists, including Sansoz, a professor in UVM's College of Engineering and Mathematical Sciences, and colleagues from the Lawrence Livermore National Laboratory and elsewhere, write in the May 19 edition of Nature Materials that coherent twin boundaries found in copper "are inherently defective."

With a high-resolution electron microscope, using a more powerful technique than has ever been used to examine these boundaries, they found tiny kink-like steps and curvatures in what had previously been observed as perfect.

Even more surprising, these kinks and other defects appear to be the cause of the coherent twin boundary's strength and other desirable qualities.

"Everything we have learned on these materials in the past 10 years will have to be revisited with this new information," Sansoz says

The experiment, led by Morris Wang at the Lawrence Livermore Lab, applied a newly developed mapping technique to study the crystal orientation of CTBs in so-called nanotwinned copper and "boom—it revealed these defects," says Sansoz.

This real-world discovery conformed to earlier intriguing theoretical findings that Sansoz had been making with "atomistic simulations" on a computer. The lab results sent Sansoz back to his computer models where he introduced the newly discovered "kink" defects into his calculations. Using UVM's Vermont Advanced Computing Center, he theoretically confirmed that the kink defects observed by the Livermore team lead to "rather rich deformation processes at the atomic scale," he says, that do not exist with perfect twin boundaries.

With the computer model, "we found a series of completely new mechanisms," he says, for explaining why coherent twin boundaries simultaneously add strength and yet also allow stretching (what scientists call "tensile ductility")— properties that are usually mutually exclusive in conventional materials.

"We had no idea such defects existed," says Sansoz. "So much for the perfect twin boundary. We now call them defective twin boundaries."

For several decades, scientists have looked for ways to shrink the size of individual crystalline grains within metals and other materials. Like a series of dykes or walls within the larger structure, the boundaries between grains can slow internal slip and help resist failure. Generally, the more of these boundaries—the stronger the material.

Originally, scientists believed that coherent twin boundaries in materials were much more reliable and stable than conventional grain boundaries, which are incoherently full of defects. But the new research shows they could both contain similar types of defects despite very different boundary energies.

"Understanding these defective structures is the first step to take full use of these CTBs for strengthening and maintaining the ductility and electrical conductivity of many materials," Morris Wang said. "To understand the behavior and mechanisms of these defects will help our engineering design of these materials for high-strength applications."

For Sansoz, this discovery underlines a deep principle, "There are all manner of defects in nature," he says, "with nanotech, you are trying to control the way they are formed and dispersed in matter, and to understand their impact on properties. The point of this paper is that some defects make a material stronger."

####

For more information, please click here

Contacts:
Joshua Brown

802-656-3039

Copyright © University of Vermont

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Imaging

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Physics

Thinnest feasible membrane produced April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Materials/Metamaterials

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Tools

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Research partnerships

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Carbon nanotubes grow in combustion flames April 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE