Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Perfectly doped quantum dots yield colors to dye for

Quantum Dots doped with copper.
Quantum Dots doped with copper.

Abstract:
Quantum dots are tiny nanocrystals with extraordinary optical and electrical properties with possible uses in dye production, bioimaging, and solar energy production. Researchers at the University of Illinois at Chicago have developed a way to introduce precisely four copper ions into each and every quantum dot.

Perfectly doped quantum dots yield colors to dye for

Chicago, IL | Posted on May 11th, 2013

The introduction of these "guest" ions, called doping, opens up possibilities for fine-tuning the optical properties of the quantum dots and producing spectacular colors.

"When the crystallinity is perfect, the quantum dots do something that no one expected--they become very emissive and end up being the world's best dye," says Preston Snee, assistant professor of chemistry at UIC and principal investigator on the study.

The results are reported in the journal ACS Nano, available online in advance of print publication. Incorporating guest ions into the crystal lattice can be very challenging, says UIC graduate student Ali Jawaid, first author of the paper.

Controlling the number of ions in each quantum dot is tricky. Merely targeting an average number of guest ions will not produce quantum dots with optimal electrical and optical properties.

Jawaid developed a procedure that reliably produces perfect quantum dots, each doped with exactly four copper ions. Snee believes the method will enable them to substitute other guest ions with the same consistent results.

"This opens up the opportunity to study a wide array of doped quantum dot systems," he said.

Donald Wink and Leah Page of UIC and Soma Chattopadhyay of Argonne National Laboratory also contributed to the study.

Support for the research came from UIC and the UIC Chancellor's Discovery Fund and the American Chemical Society Petroleum Research Fund. The Materials Research Collaborative Access Team, a consortium for building and operating x-ray beamlines at Argonne's Advanced Photon Source, is supported by the U.S. Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source was supported by the DOE Office of Basic Energy Sciences under contract DE-QC02-06CH11357.

####

About University of Illinois at Chicago
UIC ranks among the nation's leading research universities and is Chicago's largest university with 27,500 students, 12,000 faculty and staff, 15 colleges and the state's major public medical center. A hallmark of the campus is the Great Cities Commitment, through which UIC faculty, students and staff engage with community, corporate, foundation and government partners in hundreds of programs to improve the quality of life in metropolitan areas around the world.

For more information, please click here

Contacts:
Jeanne Galatzer-Levy

312-996-1583

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Discoveries

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Announcements

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Quantum Dots/Rods

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project