Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists image nanoparticles in action

Deborah Kelly
Deborah Kelly

Abstract:
The macroscopic effects of certain nanoparticles on human health have long been clear to the naked eye. What scientists have lacked is the ability to see the detailed movements of individual particles that give rise to those effects.



For the first time, researchers at the Virginia Tech Carilion Research Institute have imaged nanoparticles in action in a liquid environment.

Scientists image nanoparticles in action

Roanoke, VA | Posted on April 25th, 2013

In a recently published study, scientists at the Virginia Tech Carilion Research Institute invented a technique for imaging nanoparticle dynamics with atomic resolution as these dynamics occur in a liquid environment. The results will allow, for the first time, the imaging of nanoscale processes, such as the engulfment of nanoparticles into cells.

"We were stunned to see the large-ranged mobility in such small objects," said Deborah Kelly, an assistant professor at the Virginia Tech Carilion Research Institute. "We now have a system to watch the behaviors of therapeutic nanoparticles at atomic resolution."

Nanoparticles are made of many materials and come in different shapes and sizes. In the new study, Kelly and her colleagues chose to make rod-shaped gold nanoparticles the stars of their new molecular movies. These nanoparticles, roughly the size of a virus, are used to treat various forms of cancer. Once injected, they accumulate in solid tumors. Infrared radiation is then used to heat them and destroy nearby cancerous cells.

To take an up-close look at the gold nanoparticles in action, the researchers made a vacuum-tight microfluidic chamber by pressing two silicon-nitride semiconductor chips together with a 150-nanometer spacer in between. The microchips contained transparent windows so the beam from a transmission electron microscope could pass through to create an atomic-scale image.

Using the new technique, the scientists created two types of visualizations. The first included pictures of individual nanoparticles' atomic structures at 100,000-times magnification - the highest resolution images ever taken of nanoparticles in a liquid environment.

The second visualization was a movie captured at 23,000-times magnification that revealed the movements of a group of nanoparticles reacting to an electron beam, which mimics the effects of the infrared radiation used in cancer therapies.

In the movie, the gold nanoparticles can be seen surfing nanoscale tidal waves.

"The nanoparticles behaved like grains of sand being concentrated on a beach by crashing waves," said Kelly. "We think this behavior may be related to why the nanoparticles become concentrated in tumors. Our next experiment will be to insert a cancer cell to study the nanoparticles' therapeutic effects on tumors."

The team is also testing the resolution of the microfluidic system with other reagents and materials, bringing researchers one step closer to viewing live biological mechanisms in action at the highest levels of resolution possible.

The study appeared in Chemical Communications in the article "Visualizing Nanoparticle Mobility in Liquid at Atomic Resolution," by Madeline Dukes, an applications scientist at Protochips Inc. in Raleigh, N.C.; Benjamin Jacobs, an applications scientist at Protochips; David Morgan, assistant manager of the Cryo-Transmission Electron Microscopy Facility at Indiana University Bloomington; Harshad Hegde, a computer scientist at the Virginia Tech Carilion Research Institute; and Kelly, who is also an assistant professor of biological sciences in the College of Science at Virginia Tech.

The Virginia Tech Carilion School of Medicine and Research Institute joins the basic science, life science, bioinformatics, and engineering strengths of Virginia Tech with the medical practice and medical education experience of Carilion Clinic. Virginia Tech Carilion is located in a new biomedical health sciences campus in Roanoke at 2 Riverside Circle.

Written by Ken Kingery.

####

For more information, please click here

Contacts:
Paula Byron

540-526-2027

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article - “Visualizing Nanoparticle Mobility in Liquid at Atomic Resolution,” by Madeline Duke:

Related News Press

News and information

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Imaging

Engineers shrink microscope to dime-sized device February 17th, 2017

Direct radiolabeling of nanomaterials: Directly radiolabeled nanographene materials without chelators are suitable for bioimaging applications February 9th, 2017

New method improves accuracy of imaging systems February 8th, 2017

JPK reports on the use of STM to study surface plasmons in the Molecular Science Group at ISMO – Institut des Sciences Moléculaires d’Orsay February 8th, 2017

Background suppression for super-resolution light microscopy: KIT-developed STEDD nanoscopy yields enhanced image quality for analyzing three-dimensional molecules and cell structures -- presentation in Nature Photonics February 7th, 2017

Microfluidics/Nanofluidics

DNA 'barcoding' allows rapid testing of nanoparticles for therapeutic delivery February 7th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

Fabrication of a Miniature Paper-Based Electroosmotic Actuator November 29th, 2016

Nanomedicine

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Discoveries

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Announcements

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Tools

Engineers shrink microscope to dime-sized device February 17th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project