Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists image nanoparticles in action

Deborah Kelly
Deborah Kelly

Abstract:
The macroscopic effects of certain nanoparticles on human health have long been clear to the naked eye. What scientists have lacked is the ability to see the detailed movements of individual particles that give rise to those effects.



For the first time, researchers at the Virginia Tech Carilion Research Institute have imaged nanoparticles in action in a liquid environment.

Scientists image nanoparticles in action

Roanoke, VA | Posted on April 25th, 2013

In a recently published study, scientists at the Virginia Tech Carilion Research Institute invented a technique for imaging nanoparticle dynamics with atomic resolution as these dynamics occur in a liquid environment. The results will allow, for the first time, the imaging of nanoscale processes, such as the engulfment of nanoparticles into cells.

"We were stunned to see the large-ranged mobility in such small objects," said Deborah Kelly, an assistant professor at the Virginia Tech Carilion Research Institute. "We now have a system to watch the behaviors of therapeutic nanoparticles at atomic resolution."

Nanoparticles are made of many materials and come in different shapes and sizes. In the new study, Kelly and her colleagues chose to make rod-shaped gold nanoparticles the stars of their new molecular movies. These nanoparticles, roughly the size of a virus, are used to treat various forms of cancer. Once injected, they accumulate in solid tumors. Infrared radiation is then used to heat them and destroy nearby cancerous cells.

To take an up-close look at the gold nanoparticles in action, the researchers made a vacuum-tight microfluidic chamber by pressing two silicon-nitride semiconductor chips together with a 150-nanometer spacer in between. The microchips contained transparent windows so the beam from a transmission electron microscope could pass through to create an atomic-scale image.

Using the new technique, the scientists created two types of visualizations. The first included pictures of individual nanoparticles' atomic structures at 100,000-times magnification - the highest resolution images ever taken of nanoparticles in a liquid environment.

The second visualization was a movie captured at 23,000-times magnification that revealed the movements of a group of nanoparticles reacting to an electron beam, which mimics the effects of the infrared radiation used in cancer therapies.

In the movie, the gold nanoparticles can be seen surfing nanoscale tidal waves.

"The nanoparticles behaved like grains of sand being concentrated on a beach by crashing waves," said Kelly. "We think this behavior may be related to why the nanoparticles become concentrated in tumors. Our next experiment will be to insert a cancer cell to study the nanoparticles' therapeutic effects on tumors."

The team is also testing the resolution of the microfluidic system with other reagents and materials, bringing researchers one step closer to viewing live biological mechanisms in action at the highest levels of resolution possible.

The study appeared in Chemical Communications in the article "Visualizing Nanoparticle Mobility in Liquid at Atomic Resolution," by Madeline Dukes, an applications scientist at Protochips Inc. in Raleigh, N.C.; Benjamin Jacobs, an applications scientist at Protochips; David Morgan, assistant manager of the Cryo-Transmission Electron Microscopy Facility at Indiana University Bloomington; Harshad Hegde, a computer scientist at the Virginia Tech Carilion Research Institute; and Kelly, who is also an assistant professor of biological sciences in the College of Science at Virginia Tech.

The Virginia Tech Carilion School of Medicine and Research Institute joins the basic science, life science, bioinformatics, and engineering strengths of Virginia Tech with the medical practice and medical education experience of Carilion Clinic. Virginia Tech Carilion is located in a new biomedical health sciences campus in Roanoke at 2 Riverside Circle.

Written by Ken Kingery.

####

For more information, please click here

Contacts:
Paula Byron

540-526-2027

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article - “Visualizing Nanoparticle Mobility in Liquid at Atomic Resolution,” by Madeline Duke:

Related News Press

News and information

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Imaging

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Microfluidics/Nanofluidics

What makes cancer cells spread? New device offers clues May 19th, 2015

Microchip captures clusters of circulating tumor cells -- NIH study May 18th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Discoveries

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Announcements

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project