Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists image nanoparticles in action

Deborah Kelly
Deborah Kelly

Abstract:
The macroscopic effects of certain nanoparticles on human health have long been clear to the naked eye. What scientists have lacked is the ability to see the detailed movements of individual particles that give rise to those effects.



For the first time, researchers at the Virginia Tech Carilion Research Institute have imaged nanoparticles in action in a liquid environment.

Scientists image nanoparticles in action

Roanoke, VA | Posted on April 25th, 2013

In a recently published study, scientists at the Virginia Tech Carilion Research Institute invented a technique for imaging nanoparticle dynamics with atomic resolution as these dynamics occur in a liquid environment. The results will allow, for the first time, the imaging of nanoscale processes, such as the engulfment of nanoparticles into cells.

"We were stunned to see the large-ranged mobility in such small objects," said Deborah Kelly, an assistant professor at the Virginia Tech Carilion Research Institute. "We now have a system to watch the behaviors of therapeutic nanoparticles at atomic resolution."

Nanoparticles are made of many materials and come in different shapes and sizes. In the new study, Kelly and her colleagues chose to make rod-shaped gold nanoparticles the stars of their new molecular movies. These nanoparticles, roughly the size of a virus, are used to treat various forms of cancer. Once injected, they accumulate in solid tumors. Infrared radiation is then used to heat them and destroy nearby cancerous cells.

To take an up-close look at the gold nanoparticles in action, the researchers made a vacuum-tight microfluidic chamber by pressing two silicon-nitride semiconductor chips together with a 150-nanometer spacer in between. The microchips contained transparent windows so the beam from a transmission electron microscope could pass through to create an atomic-scale image.

Using the new technique, the scientists created two types of visualizations. The first included pictures of individual nanoparticles' atomic structures at 100,000-times magnification - the highest resolution images ever taken of nanoparticles in a liquid environment.

The second visualization was a movie captured at 23,000-times magnification that revealed the movements of a group of nanoparticles reacting to an electron beam, which mimics the effects of the infrared radiation used in cancer therapies.

In the movie, the gold nanoparticles can be seen surfing nanoscale tidal waves.

"The nanoparticles behaved like grains of sand being concentrated on a beach by crashing waves," said Kelly. "We think this behavior may be related to why the nanoparticles become concentrated in tumors. Our next experiment will be to insert a cancer cell to study the nanoparticles' therapeutic effects on tumors."

The team is also testing the resolution of the microfluidic system with other reagents and materials, bringing researchers one step closer to viewing live biological mechanisms in action at the highest levels of resolution possible.

The study appeared in Chemical Communications in the article "Visualizing Nanoparticle Mobility in Liquid at Atomic Resolution," by Madeline Dukes, an applications scientist at Protochips Inc. in Raleigh, N.C.; Benjamin Jacobs, an applications scientist at Protochips; David Morgan, assistant manager of the Cryo-Transmission Electron Microscopy Facility at Indiana University Bloomington; Harshad Hegde, a computer scientist at the Virginia Tech Carilion Research Institute; and Kelly, who is also an assistant professor of biological sciences in the College of Science at Virginia Tech.

The Virginia Tech Carilion School of Medicine and Research Institute joins the basic science, life science, bioinformatics, and engineering strengths of Virginia Tech with the medical practice and medical education experience of Carilion Clinic. Virginia Tech Carilion is located in a new biomedical health sciences campus in Roanoke at 2 Riverside Circle.

Written by Ken Kingery.

####

For more information, please click here

Contacts:
Paula Byron

540-526-2027

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article - “Visualizing Nanoparticle Mobility in Liquid at Atomic Resolution,” by Madeline Duke:

Related News Press

News and information

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Imaging

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Microfluidics/Nanofluidics

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Announcements

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Tools

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project