Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > High pressure gold nanocrystal structure revealed

Abstract:
A major breakthrough in measuring the structure of nanomaterials under extremely high pressure has been made by researchers at the London Centre for Nanotechnology (LCN).

High pressure gold nanocrystal structure revealed

London, UK | Posted on April 9th, 2013

Described in Nature Communications, the study used new advances in x-ray diffraction to image the changes in morphology of gold nanocrystals under pressures of up to 6.5 gigapascals.

Under high pressures, imaging methods such as electron or atomic force microscopy are not viable, making x-ray diffraction imaging the only option. However, until recently, focusing an image created with this method has proved difficult.

Using a technique developed by LCN researchers to correct the distortions of the x-ray beams, the scientists, working in collaboration with the Carnegie Institution of Washington, have now been able to measure the structure of gold nanocrystals in higher resolution than ever before.

Professor Ian Robinson, who led the LCN's contribution to the study, said: "Solving the distortion problem of the x-ray diffraction images is analogous to prescribing eye glasses to correct vision.

"Now this problem has been solved, we can access the whole field of nanocrystal structures under pressure. The scientific mystery of why nanocrystals under pressure are up to 50% stronger than bulk material may soon be unravelled."

To carry out the research, a 400 nm diameter gold nanocrystal was put into a device called a Diamond-Anvil Cell (DAC) which can recreate the immense pressures which exist deep inside the Earth, creating materials and phases which do not exist under normal conditions.

The sample was crushed within the device and the changes were imaged as the pressure, measured by a small ruby sphere, was increased. The study showed that under low pressure, the nanocrystal acted as expected and the edges became strained, however, surprisingly, the strains disappeared under further compression.

The scientists explain this by suggesting that the pressurised material is undergoing "plastic flow", a phenomenon whereby a material will start to flow and become liquid once it reaches a critical pressure. This hypothesis was further supported when the faceted shape of the crystal developed a smoother and rounder shape as the pressure increased.

Professor Robinson added "This development has great potential for exploring the formation of minerals within the Earth's crust, which transform from one phase to another under pressure"

In the future, this technique offers a very promising approach for in-situ nanotechnology development under high pressures.

'Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure' is published online in Nature Communications today. Please contact UCL Media Relations for a copy of the paper. DOI: 10.1038/ncomms2661

####

About University College London - UCL
Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine.

We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world.

UCL has nearly 25,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million.

For more information, please click here

Contacts:
Clare Ryan

44-020-310-83846
mobile: 44-07747-556-056
out of hours 44-0-7917-271-364

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Imaging

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Discoveries

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Announcements

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Tools

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE