Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Surface diffusion plays a key role in defining the shapes of catalytic nanoparticles

Transmission electron microscope (TEM) images show four distinctive types of nanocrystals that were obtained at different reaction temperatures during Georgia Tech experiments to study the effects of surface diffusion.

Credit: Images courtesy of Younan Xia
Transmission electron microscope (TEM) images show four distinctive types of nanocrystals that were obtained at different reaction temperatures during Georgia Tech experiments to study the effects of surface diffusion.

Credit: Images courtesy of Younan Xia

Abstract:
Shape changers

Controlling the shapes of nanometer-sized catalytic and electrocatalytic particles made from noble metals such as platinum and palladium may be more complicated than previously thought.

Surface diffusion plays a key role in defining the shapes of catalytic nanoparticles

Atlanta, GA | Posted on April 8th, 2013

Using systematic experiments, researchers have investigated how surface diffusion - a process in which atoms move from one site to another on nanoscale surfaces - affects the final shape of the particles. The issue is important for a wide range of applications that use specific shapes to optimize the activity and selectivity of nanoparticles, including catalytic converters, fuel cell technology, chemical catalysis and plasmonics.

Results of the research could lead to a better understanding of how to manage the diffusion process by controlling the reaction temperature and deposition rate, or by introducing structural barriers designed to hinder the surface movement of atoms.

"We want to be able to design the synthesis to produce nanoparticles with the exact shape we want for each specific application," said Younan Xia, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "Fundamentally, it is important to understand how these shapes are formed, to visualize how this happens on structures over a length scale of about 100 atoms."

The research was reported April 8 in the early online edition of the journal Proceedings of the National Academy of Sciences (PNAS). The research was sponsored by the National Science Foundation (NSF).

Controlling the shape of nanoparticles is important in catalysis and other applications that require the use of expensive noble metals such as platinum and palladium. For example, optimizing the shape of platinum nanoparticles can substantially enhance their catalytic activity, reducing demand for the precious material, noted Xia, who is a Georgia Research Alliance (GRA) eminent scholar in nanomedicine. Xia also holds joint appointments in the School of Chemistry and Biochemistry and the School of Chemical and Biomolecular Engineering at Georgia Tech.

"Controlling the shape is very important to tuning the activity of catalysts and in minimizing the loading of the catalysts," he said. "Shape control is also very important in plasmonic applications, where the shape controls where optical absorption and scattering peaks are positioned. Shape is also important to determining where the electrical charges will be concentrated on nanoparticles."

Though the importance of particle shape at the nanoscale has been well known, researchers hadn't before understood the importance of surface diffusion in creating the final particle shape. Adding atoms to the corners of platinum cubes, for instance, can create particles with protruding "arms" that increase the catalytic activity. Convex surfaces on cubic particles may also provide better performance. But those advantageous shapes must be created and maintained.

Natural energetic preferences related to the arrangement of atoms on the tiny structures favor a spherical shape that is not ideal for most catalysts, fuel cells and other applications.

In their research, Xia and his collaborators varied the temperature of the process used to deposit atoms onto metallic nanocrystals that acted as seeds for the nanoparticles. They also varied the rates at which atoms were deposited onto the surfaces, which were determined by the injection rate at which a chemical precursor material was introduced. The diffusion rate is determined by the temperature, with higher temperatures allowing the atoms to move around faster on the nanoparticle surfaces. In the research, bromide ions were used to limit the movement of the added atoms from one portion of the particle to another.

Using transmission electron microscopy, the researchers observed the structures that were formed under different conditions. Ultimately, they found that the ratio of the deposition rate to the diffusion rate determines the final shape. When the ratio is greater than one, the adsorbed atoms tend to stay where they are placed. If the ratio is less than one, they tend to move.

"Unless the atomic reaction is at absolute zero, you will always have some diffusion," said Xia, who holds the Brock Family Chair in the Department of Biomedical Engineering. "But if you can add atoms to the surface in the places that you want them faster than they can diffuse, you can control the final destination for the atoms."

Xia believes the research may also lead to improved techniques for preserving the unique shapes of nanoparticles even at high operating temperatures.

"Fundamentally, it is very useful for people to know how these shapes are formed," he said. "Most of these structures had been observed before, but people did not understand why they formed under certain conditions. To do that, we need to be able to visualize what happens on these tiny structures."

Xia's research team also studied the impact of diffusion on bi-metallic particles composed of both palladium and platinum. The combination can enhance certain properties, and because palladium is currently less expensive than platinum, using a core of palladium covered by a thin layer of platinum provides the catalytic activity of platinum while reducing cost.

In that instance, surface diffusion can be helpful in covering the palladium surface with a single monolayer of the platinum. Only the surface platinum atoms will be able to provide the catalytic properties, while the palladium core only serves as a support.

The research is part of a long-term study of catalytic nanoparticles being conducted by Xia's research group. Other aspects of the team's work addresses biomedical uses of nanoparticles in such areas as cancer therapy.

"We are very excited by this result because it is generic and can apply to understand and control diffusion on the surfaces of many systems," Xia added. "Ultimately we want to see how we can take advantage of this diffusion to improve the catalytic and optical properties of these nanoparticles."

The research team also included Xiaohu Xia, Shuifen Xie, Maochang Liu and Hsin-Chieh Peng at Georgia Tech; and Ning Lu, Jinguo Wang and Professor Moon J. Kim at the University of Texas at Dallas.

This research was supported by the National Science Foundation (NSF) under grant DMR-1215034 and by startup funds from Georgia Tech. Any conclusions expressed are those of the principal investigator and may not necessarily represent the official views of the NSF.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Imaging

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Chemistry

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Tools

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Automotive/Transportation

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

GLOBALFOUNDRIES Introduces New Automotive Platform to Fuel Tomorrow’s Connected Car: AutoPro™ provides a full range of technologies and manufacturing services to help carmakers harness the power of silicon for a new era of ‘connected intelligence’ October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Research partnerships

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project