Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Surface diffusion plays a key role in defining the shapes of catalytic nanoparticles

Transmission electron microscope (TEM) images show four distinctive types of nanocrystals that were obtained at different reaction temperatures during Georgia Tech experiments to study the effects of surface diffusion.

Credit: Images courtesy of Younan Xia
Transmission electron microscope (TEM) images show four distinctive types of nanocrystals that were obtained at different reaction temperatures during Georgia Tech experiments to study the effects of surface diffusion.

Credit: Images courtesy of Younan Xia

Abstract:
Shape changers

Controlling the shapes of nanometer-sized catalytic and electrocatalytic particles made from noble metals such as platinum and palladium may be more complicated than previously thought.

Surface diffusion plays a key role in defining the shapes of catalytic nanoparticles

Atlanta, GA | Posted on April 8th, 2013

Using systematic experiments, researchers have investigated how surface diffusion - a process in which atoms move from one site to another on nanoscale surfaces - affects the final shape of the particles. The issue is important for a wide range of applications that use specific shapes to optimize the activity and selectivity of nanoparticles, including catalytic converters, fuel cell technology, chemical catalysis and plasmonics.

Results of the research could lead to a better understanding of how to manage the diffusion process by controlling the reaction temperature and deposition rate, or by introducing structural barriers designed to hinder the surface movement of atoms.

"We want to be able to design the synthesis to produce nanoparticles with the exact shape we want for each specific application," said Younan Xia, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "Fundamentally, it is important to understand how these shapes are formed, to visualize how this happens on structures over a length scale of about 100 atoms."

The research was reported April 8 in the early online edition of the journal Proceedings of the National Academy of Sciences (PNAS). The research was sponsored by the National Science Foundation (NSF).

Controlling the shape of nanoparticles is important in catalysis and other applications that require the use of expensive noble metals such as platinum and palladium. For example, optimizing the shape of platinum nanoparticles can substantially enhance their catalytic activity, reducing demand for the precious material, noted Xia, who is a Georgia Research Alliance (GRA) eminent scholar in nanomedicine. Xia also holds joint appointments in the School of Chemistry and Biochemistry and the School of Chemical and Biomolecular Engineering at Georgia Tech.

"Controlling the shape is very important to tuning the activity of catalysts and in minimizing the loading of the catalysts," he said. "Shape control is also very important in plasmonic applications, where the shape controls where optical absorption and scattering peaks are positioned. Shape is also important to determining where the electrical charges will be concentrated on nanoparticles."

Though the importance of particle shape at the nanoscale has been well known, researchers hadn't before understood the importance of surface diffusion in creating the final particle shape. Adding atoms to the corners of platinum cubes, for instance, can create particles with protruding "arms" that increase the catalytic activity. Convex surfaces on cubic particles may also provide better performance. But those advantageous shapes must be created and maintained.

Natural energetic preferences related to the arrangement of atoms on the tiny structures favor a spherical shape that is not ideal for most catalysts, fuel cells and other applications.

In their research, Xia and his collaborators varied the temperature of the process used to deposit atoms onto metallic nanocrystals that acted as seeds for the nanoparticles. They also varied the rates at which atoms were deposited onto the surfaces, which were determined by the injection rate at which a chemical precursor material was introduced. The diffusion rate is determined by the temperature, with higher temperatures allowing the atoms to move around faster on the nanoparticle surfaces. In the research, bromide ions were used to limit the movement of the added atoms from one portion of the particle to another.

Using transmission electron microscopy, the researchers observed the structures that were formed under different conditions. Ultimately, they found that the ratio of the deposition rate to the diffusion rate determines the final shape. When the ratio is greater than one, the adsorbed atoms tend to stay where they are placed. If the ratio is less than one, they tend to move.

"Unless the atomic reaction is at absolute zero, you will always have some diffusion," said Xia, who holds the Brock Family Chair in the Department of Biomedical Engineering. "But if you can add atoms to the surface in the places that you want them faster than they can diffuse, you can control the final destination for the atoms."

Xia believes the research may also lead to improved techniques for preserving the unique shapes of nanoparticles even at high operating temperatures.

"Fundamentally, it is very useful for people to know how these shapes are formed," he said. "Most of these structures had been observed before, but people did not understand why they formed under certain conditions. To do that, we need to be able to visualize what happens on these tiny structures."

Xia's research team also studied the impact of diffusion on bi-metallic particles composed of both palladium and platinum. The combination can enhance certain properties, and because palladium is currently less expensive than platinum, using a core of palladium covered by a thin layer of platinum provides the catalytic activity of platinum while reducing cost.

In that instance, surface diffusion can be helpful in covering the palladium surface with a single monolayer of the platinum. Only the surface platinum atoms will be able to provide the catalytic properties, while the palladium core only serves as a support.

The research is part of a long-term study of catalytic nanoparticles being conducted by Xia's research group. Other aspects of the team's work addresses biomedical uses of nanoparticles in such areas as cancer therapy.

"We are very excited by this result because it is generic and can apply to understand and control diffusion on the surfaces of many systems," Xia added. "Ultimately we want to see how we can take advantage of this diffusion to improve the catalytic and optical properties of these nanoparticles."

The research team also included Xiaohu Xia, Shuifen Xie, Maochang Liu and Hsin-Chieh Peng at Georgia Tech; and Ning Lu, Jinguo Wang and Professor Moon J. Kim at the University of Texas at Dallas.

This research was supported by the National Science Foundation (NSF) under grant DMR-1215034 and by startup funds from Georgia Tech. Any conclusions expressed are those of the principal investigator and may not necessarily represent the official views of the NSF.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project