Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Glass-blowers at a nano scale: EPFL researchers are using the electrical properties of a scanning electron microscope to change the size of glass capillary tubes -- Their method has already been patented as it could pave the way to many novel applications

A few of these commercial pre-shrunk nano-capillaries have had their end diameter reduced to a few nanometers, from an original 200 nm, thanks to an electron microscope at EPFL's Center for MicroNanotechnology.

Credit: Alain Herzog / EPFL
A few of these commercial pre-shrunk nano-capillaries have had their end diameter reduced to a few nanometers, from an original 200 nm, thanks to an electron microscope at EPFL's Center for MicroNanotechnology.

Credit: Alain Herzog / EPFL

Abstract:
Have you ever thrown into the fire - even if you shouldn't have - an empty packet of crisps? The outcome is striking: the plastic shrivels and bends into itself, until it turns into a small crumpled and blackened ball. This phenomenon is explained by the tendency of materials to pick up their original features in the presence of the right stimulus. Hence, this usually happens when heating materials that were originally shaped at high temperatures and cooled afterwards.

Glass-blowers at a nano scale: EPFL researchers are using the electrical properties of a scanning electron microscope to change the size of glass capillary tubes -- Their method has already been patented as it could pave the way to many novel applications

Lausanne, Switzerland | Posted on March 25th, 2013

EPFL researchers realized that this phenomenon occurred to ultrathin quartz tubes (capillary tubes) under the beam of a scanning electron microscope. "This is not the original microscope's purpose. The temperature increase is explained by an accumulation of electrons in the glass. Electrons accumulate because glass is a non-conductive material." explains Lorentz Steinbock, researcher at the Laboratory of Nanoscale Biology and co-author of a paper on this subject published in Nano-letters.

As the glass shrinks, it can be seen live on the microscope screen. "It's like a glass-blower. Thanks to the possibilities provided by the new microscope at EPFL's Center of Micronanotechnology (MIC), the operator can adjust the microscope's voltage and electric field strength while observing the tube's reaction. Thus, the person operating the microscope can very precisely control the shape he wants to give to the glass", says Aleksandra Radenovic, tenure-track assistant professor in charge of the laboratory.

At the end of this process, the capillary tube's ends are perfectly controllable in diameter, ranging from 200 nanometers to fully closed. The scientists tested their slimmed down tubes in an experiment aiming to detect DNA segments in a sample. The test sample was moved from one container to another on a microfluidic chip. Whenever a molecule crossed the "channel" connecting the containers, the variation of the ion current was measured. As expected, the EPFL team obtained more accurate results with a tube reduced to the size of 11 nm than with standard market models. "By using a capillary tube costing only a few cents, in five minutes we are able to make a device that can replace "nano-channels" sold for hundreds of dollars!" explains Aleksandra Radenovic.

These nano-fillers have a potential beyond laboratory usage. "We can imagine industrial applications in ultra-high precision printers, as well as opportunities in surgery, where micro-pipettes of this type could be used at a cell's scale", says the researcher.

For the time being, the method for manufacturing nano-capillary tubes is manual, the transition to an industrial scale will take some time. However, the researchers have been able to demonstrate the concept behind their discovery and have registered a patent. Therefore, the road is already paved.

####

For more information, please click here

Contacts:
Lorenz Steinbock

41-216-931-162

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Imaging

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Discoveries

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Announcements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

Nanobiotechnology

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project