Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Agilent Technologies Enhances Application Versatility of Atomic Force Microscope for Studying Large and Small Samples

Abstract:
Agilent Technologies Inc. (NYSE: A) today announced the availability of 300 mm x 300 mm and multisample two-inch-wafer stages for its large-stage 5600LS atomic force microscope. These new stages extend the application versatility of the Agilent 5600LS AFM, which also offers the largest fully addressable and programmable 200 mm x 200 mm stage, plus a special stage adapter for imaging small samples.

Agilent Technologies Enhances Application Versatility of Atomic Force Microscope for Studying Large and Small Samples

Santa Clara, CA | Posted on March 11th, 2013

"With its expanded selection of stages, the modular 5600LS provides researchers an ideal tool for semiconductor, optoelectronics, materials science and life science studies at the nanoscale," said Jeff Jones, general manager for Agilent's nanoinstrumentation facility in Chandler, Ariz. "The 5600LS is the world's finest commercially available AFM that permits imaging of both large samples [in air] and small samples [in air, or in liquid under temperature control]."

The 5600LS system's programmable, motorized stage quickly and accurately positions probes to image and map specimens with 0.5μm precision. Investigators can locate and identify an area of interest and, with the coordinates stored, automatically reposition the sample for further study. Multiple locations can be programmed. The stage easily accommodates either a single sample up to 200 mm in diameter and 30 mm tall or as many as nine small samples with the 200 mm vacuum chuck (more can be held with tape), each of whose locations can be programmed.

The new 300 mm x 300 mm stage allows 5600LS users to handle larger semiconductor wafer samples. Alternatively, the new multisample, two-inch-wafer stage is perfect for research involving optoelectronics and LEDs.

The 5600LS is compatible with all standard imaging modes and with Agilent's unique scanning microwave microscopy (SMM) mode, which combines the compound, calibrated electrical measurement capabilities of a microwave vector network analyzer with the outstanding spatial resolution of an atomic force microscope. SMM mode is particularly useful for testing and characterizing semiconductors. It can be used to measure complex impedance (resistance and reactance) as well as calibrated capacitance and dopant density.

AFM Instrumentation from Agilent

Agilent offers high-precision, modular AFM solutions for research, industry and education. Worldwide support is provided by experienced application scientists and technical service personnel. Agilent's leading-edge R&D laboratories are dedicated to the timely introduction and optimization of innovative and easy-to-use AFM technologies.

####

About Agilent Technologies Inc.
Agilent Technologies Inc. (NYSE: A) is the world’s premier measurement company and a technology leader in chemical analysis, life sciences, diagnostics, electronics, and communications. The company’s 20,500 employees serve customers in more than 100 countries. Agilent had revenues of $6.9 billion in fiscal 2012.

For more information, please click here

Contacts:
Janet Smith
Americas
+1 970 679 5397

Twitter: @JSmithAgilent

Joan Horwitz
nanomeasurement
+1 480 756 5905

Copyright © Agilent Technologies Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Imaging

Tiny camera lens may help link quantum computers to network September 14th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Announcements

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Tools

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Stress-free ALD from Picosun August 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project