Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Temp-controlled 'nanopores' may allow detailed blood analysis

By tethering gold nanoparticles (large spheres in top image) to the nanopore (violet), the temperature around the nanopore can be changed quickly and precisely with laser light, allowing scientists to distinguish between similar molecules in the pore that behave differently under varied temperature conditions.

Credit: Robertson/NIST
By tethering gold nanoparticles (large spheres in top image) to the nanopore (violet), the temperature around the nanopore can be changed quickly and precisely with laser light, allowing scientists to distinguish between similar molecules in the pore that behave differently under varied temperature conditions.

Credit: Robertson/NIST

Abstract:
Tiny biomolecular chambers called nanopores that can be selectively heated may help doctors diagnose disease more effectively if recent research by a team at the National Institute of Standards and Technology (NIST), Wheaton College, and Virginia Commonwealth University (VCU) proves effective. Though the findings* may be years away from application in the clinic, they may one day improve doctors' ability to search the bloodstream quickly for indicators of disease—a longstanding goal of medical research.

Temp-controlled 'nanopores' may allow detailed blood analysis

Gaithersburg, MD | Posted on March 9th, 2013

The team has pioneered work on the use of nanopores—tiny chambers that mimic the ion channels in the membranes of cells—for the detection and identification of a wide range of molecules, including DNA. Ion channels are the gateways by which the cell admits and expels materials like proteins, ions and nucleic acids. The typical ion channel is so small that only one molecule can fit inside at a time.

Previously, team members inserted a nanopore into an artificial cell membrane, which they placed between two electrodes. With this setup, they could drive individual molecules into the nanopore and trap them there for a few milliseconds, enough to explore some of their physical characteristics.

"A single molecule creates a marked change in current that flows through the pore, which allows us to measure the molecule's mass and electrical charge with high accuracy," says Joseph Reiner, a physicist at VCU who previously worked at NIST. "This enables discrimination between different molecules at high resolution. But for real-world medical work, doctors and clinicians will need even more advanced measurement capability."

A goal of the team's work is to differentiate among not just several types of molecules, but among the many thousands of different proteins and other biomarkers in our bloodstream. For example, changes in protein levels can indicate the onset of disease, but with so many similar molecules in the mix, it is important not to mistake one for another. So the team expanded their measurement capability by attaching gold nanoparticles to engineered nanopores, "which provides another means to discriminate between various molecular species via temperature control," Reiner says.

The team attached gold nanoparticles to the nanopore via tethers made from complementary DNA strands. Gold's ability to absorb light and quickly convert its energy to heat that conducts into the adjacent solution allows the team to alter the temperature of the nanopore with a laser at will, dynamically changing the way individual molecules interact with it.

"Historically, sudden temperature changes were used to determine the rates of chemical reactions that were previously inaccessible to measurement," says NIST biophysicist John Kasianowicz. "The ability to rapidly change temperatures in volumes commensurate with the size of single molecules will permit the separation of subtly different species. This will not only aid the detection and identification of biomarkers, it will also help develop a deeper understanding of thermodynamic and kinetic processes in single molecules."

The team is researching ways to improve semiconductor-based nanopores, which could further expand this new measurement capability.

*J.E. Reiner, J.W.F. Robertson, D.L. Burden, L.K. Burden, A. Balijepalli and J.J. Kasianowicz. Temperature sculpting in yoctoliter volumes. Journal of the American Chemical Society, DOI: 10.1021/ja309892e. Jan. 24, 2013.

####

For more information, please click here

Contacts:
Chad Boutin

301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Laboratories

Scientists take nanoparticle snapshots February 10th, 2016

Lab-on-a-chip

Nanoworld 'snow blowers' carve straight channels in semiconductor surfaces: NIST, IBM researchers report important addition to toolkit of 'self-assembly' methods eyed for making useful devices December 28th, 2015

Photons on a chip set new paths for secure communications November 16th, 2015

Monitoring critical blood levels in real time in the ICU: EPFL has developed a miniaturized microfluidic device that will allow medical staff to monitor in real time levels of glucose, lactate a.s.o. and react more quickly October 22nd, 2015

Chip-based technology enables reliable direct detection of Ebola virus: Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA September 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Nanomedicine

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Discoveries

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Announcements

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Research partnerships

Chemical cages: New technique advances synthetic biology February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic