Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NAFEN™ kick-starts a new era in nano fiber development and innovation

Abstract:
ANF Technology Ltd., the manufacturer of NAFEN™, the first ever superior-grade aluminum oxide nano fiber to be manufactured at commercially viable, industrial volumes, is delighted to be presenting at the 37th International Conference and Exposition on Advanced Ceramics and Composites (ICACC 13) at Daytona Beach, Florida, USA (27th Jan - 1st Feb 2013), attended by over 750 leading materials science research and industrial exhibitors.

NAFEN™ kick-starts a new era in nano fiber development and innovation

Daytona Beach, FL | Posted on January 29th, 2013

Developed and produced by ANF Technology Ltd, the breakthrough NAFEN™ aluminum oxide nano fiber will showcase how it can help industrial manufacturing companies stay ahead of the competition in the field of advanced ceramics.

ICACC 13 is the leading industry event for ceramic materials scientists, engineers and manufacturers to share latest knowledge, best practices and cutting-edge developments in advanced ceramics.

Tim Ferland, ANF Technology's Business Development Manager for North America, commented: "NAFEN™ could help resolve some of the main areas of concern in the advanced ceramics industry. The issues being targeted include brittleness, high-temperature instability, susceptibility to abrasion and susceptibility to chemicals, (bio-compatibility). After creating a wave of interest in NAFEN's possible uses in ceramics at CERAMITEC 2012 in Munich and other events, we are at varying stages of collaboration with 5 major global accounts which are testing, or planning to test, NAFEN™. We are looking forward to meeting with more industrial players and research institutions at ICACC 13 in Daytona Beach".

NAFEN™ fibers are a perfect reinforcing element for ceramic composites due to their inherent physical and mechanical properties:

• High tensile strength of 40+ Gpa (10x higher than steel)
· Hardness of 9+ Mohs
• Thermal stability (gamma phase) up to 1200 C
• Particle diameters from 5 nm to 50 nm
• Extremely large surface area
• Transformation to alpha phase over 1200 C
• No agglomeration
· Chemical resistant
· Radiation resistant
• Heat conductivity of 0.025 W/m*K
· Available in blocks of co-aligned fibers or milled powders

Mikhail Kutuzov, the inventor of NAFEN™, will share his vision on how this unique industrial-scale nanotechnology can boost critical performance factors in ceramic composite materials producing benefits that can be passed through the entire enterprise value-chain to end user customers. The current market for ceramic matrix composites is estimated at over US$0.9 bln with annual growth of approximately 8%. NAFEN™ samples are currently being tested at a number of leading advanced ceramics manufacturers.

"NAFEN™ is a breakthrough development in materials science", states Mikhail Kutuzov. "As a composite component it is capable of improving critical performance factors in existing materials and solutions, as well as opening the door to further innovation. In NAFEN™-inside ceramic matrix composites (CMC) we have seen significant increases in thermal stability, chemical resistance, flexibility and lower temperature conductivity. NAFEN™ fibers improve ductility of ceramic matrices, keeping Young's modulus high while increasing creep resistance and decreasing brittleness. This leads to better performance under thermocycling and higher fatigue strength, opening new areas of mass applications for structural ceramic materials. "

Mikhail Kutuzov added, "This also offers tremendous potential for use in applications in the field of thermal insulation, for example in industrial ceramics kilns where increases in thermal efficiency offer energy saving costs and increased productivity. Until now companies have not been able to produce this type of material in sufficient quantities at commercial prices with consistent quality. NAFEN™ provides the solution to that challenge."

At present powdered silicon carbide is the most widely used ceramic matrix composite (CMC) reinforcing nanomaterial but production volumes are fundamentally limited by the technology of the production process and prices that are significantly higher than NAFEN™. This is why there are still no CMCs reinforced with nanoparticles. Low nanomaterial volumes and high prices have, until now, held back CMC developments.

The high-performance, cost and production volume benefits of NAFEN™ give industry the key to unlocking innovation across a wide range of applications in a number of sectors. These include: Composite Ceramics, Metal-matrix composites, Paints and Coatings, Polymer composites, Catalysts, Electronics, Filtration, Biomedicine, Advanced Abrasives and Aerospace.

####

About ANF Technology Ltd
Through its technical expertise in nanotechnology materials development and production, ANF Technology Ltd seeks to build strong partnerships with industrial players, universities and national laboratories in order to accelerate materials innovation and open up new NAFEN™ markets.



ANF Technology Ltd currently has key research and development partnerships with scientific and research institutions including Cambridge University (UK), Oxford University (UK), University of Grenoble (France), University of Twente (Netherlands), Boreskov Institute of Catalysts SB RAS (Russia), VILS (Russia), MISIS (Russia), Tallinn Technical University (Estonia) and University of Tartu (Estonia).

Contacts:
Kinlan Communications
Tel. +44 20 7638 3435

David Hothersall

Tom Strachan-McCarter

Copyright © ANF Technology Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Chemistry

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanomedicine

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Materials/Metamaterials

Production of Biocompatible Polymers in Iran October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Aerospace/Space

New evidence for an exotic, predicted superconducting state October 27th, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Industrial

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Events/Classes

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Iran-Made Respiratory Nano Masks Provided to Hajj Pilgrims October 23rd, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE