Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research by CU-Boulder physicists creates ‘recipe book’ for building new materials

This image shows polarized light interacting with a particle injected into a liquid crystal medium. Photo by CU-Boulder scientists Bohdan Senyuk and Ivan Smalyukh.
This image shows polarized light interacting with a particle injected into a liquid crystal medium.

Photo by CU-Boulder scientists Bohdan Senyuk and Ivan Smalyukh.

Abstract:
By showing that tiny particles injected into a liquid crystal medium adhere to existing mathematical theorems, physicists at the University of Colorado Boulder have opened the door for the creation of a host of new materials with properties that do not exist in nature.

Research by CU-Boulder physicists creates ‘recipe book’ for building new materials

Boulder, CO | Posted on December 28th, 2012

The findings show that researchers can create a "recipe book" to build new materials of sorts using topology, a major mathematical field that describes the properties that do not change when an object is stretched, bent or otherwise "continuously deformed." Published online Dec. 23 in the journal Nature, the study also is the first to experimentally show that some of the most important topological theorems hold up in the real material world, said CU-Boulder physics department Assistant Professor Ivan Smalyukh, a study senior author.

The research could lead to upgrades in liquid crystal displays, like those used in laptops and television screens, to allow them to interact with light in new and different ways. One possibility is to create liquid crystal displays that are even more energy efficient, Smalyukh said, extending the battery life for the devices they're attached to.

The research was funded in part by Smalyukh's Presidential Early Career Award for Scientists and Engineers, which he received from President Barack Obama in 2010. And the research supports the goals laid out by the White House's Materials Genome Initiative, Smalyukh said, which seeks to deploy "new advanced materials at least twice as fast as possible today, at a fraction of the cost."

Smalyukh, postdoctoral researcher Bohdan Senyuk, and doctoral student Qingkun Liu set up the experiment by creating colloids — solutions in which tiny particles are dispersed, but not dissolved, throughout a host medium. Colloids are common in everyday life and include substances such as milk, jelly, paint, smoke, fog and shaving cream.

For this study, the physicists created a colloid by injecting tiny particles into a liquid crystal — a substance that behaves somewhat like a liquid and somewhat like a solid. The researchers injected differently shaped particles that represent fundamental building-block shapes in topology. That means each of the particles is distinct from the others and one cannot be turned into the other without cutting or gluing. Objects that look differently can still be considered the same in topology if one can be turned into the other by stretching or bending - types of "continuous deformations."

In the field of topology, for example, an object shaped like a donut and an object shaped like a coffee cup are treated the same. That's because a donut shape can be "continuously deformed" into a coffee cup by indenting one side of the donut. But a donut-shaped object cannot be turned into a sphere or a cylinder because the hole in the donut would have to be eliminated by "gluing" the sides of the donut back together or by "cutting" the side of the donut.

Once injected into a liquid crystal, the particles behaved as predicted by topology. "Our study shows that interaction between particles and molecular alignment in liquid crystals follows the predictions of topological theorems, making it possible to use these theorems in designing new composite materials with unique properties that cannot be encountered in nature or synthesized by chemists," Smalyukh said. "These findings lay the groundwork for new applications in experimental studies of low-dimensional topology, with important potential ramifications for many branches of science and technology."

The study was co-authored by Sailing He of Zhejiang University in China; Randall Kamien and Tom Lubensky of the University of Pennsylvania, and Robert Kusner of the University of Massachusetts, Amherst.

####

For more information, please click here

Contacts:
Ivan Smalyukh

303-492-7277

Laura Snider
CU media relations
303-735-0528

Copyright © University of Colorado at Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Atomically thin light-emitting device opens the possibility for 'invisible' displays March 26th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Materials/Metamaterials

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Research partnerships

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project