Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research by CU-Boulder physicists creates ‘recipe book’ for building new materials

This image shows polarized light interacting with a particle injected into a liquid crystal medium. Photo by CU-Boulder scientists Bohdan Senyuk and Ivan Smalyukh.
This image shows polarized light interacting with a particle injected into a liquid crystal medium.

Photo by CU-Boulder scientists Bohdan Senyuk and Ivan Smalyukh.

Abstract:
By showing that tiny particles injected into a liquid crystal medium adhere to existing mathematical theorems, physicists at the University of Colorado Boulder have opened the door for the creation of a host of new materials with properties that do not exist in nature.

Research by CU-Boulder physicists creates ‘recipe book’ for building new materials

Boulder, CO | Posted on December 28th, 2012

The findings show that researchers can create a "recipe book" to build new materials of sorts using topology, a major mathematical field that describes the properties that do not change when an object is stretched, bent or otherwise "continuously deformed." Published online Dec. 23 in the journal Nature, the study also is the first to experimentally show that some of the most important topological theorems hold up in the real material world, said CU-Boulder physics department Assistant Professor Ivan Smalyukh, a study senior author.

The research could lead to upgrades in liquid crystal displays, like those used in laptops and television screens, to allow them to interact with light in new and different ways. One possibility is to create liquid crystal displays that are even more energy efficient, Smalyukh said, extending the battery life for the devices they're attached to.

The research was funded in part by Smalyukh's Presidential Early Career Award for Scientists and Engineers, which he received from President Barack Obama in 2010. And the research supports the goals laid out by the White House's Materials Genome Initiative, Smalyukh said, which seeks to deploy "new advanced materials at least twice as fast as possible today, at a fraction of the cost."

Smalyukh, postdoctoral researcher Bohdan Senyuk, and doctoral student Qingkun Liu set up the experiment by creating colloids — solutions in which tiny particles are dispersed, but not dissolved, throughout a host medium. Colloids are common in everyday life and include substances such as milk, jelly, paint, smoke, fog and shaving cream.

For this study, the physicists created a colloid by injecting tiny particles into a liquid crystal — a substance that behaves somewhat like a liquid and somewhat like a solid. The researchers injected differently shaped particles that represent fundamental building-block shapes in topology. That means each of the particles is distinct from the others and one cannot be turned into the other without cutting or gluing. Objects that look differently can still be considered the same in topology if one can be turned into the other by stretching or bending - types of "continuous deformations."

In the field of topology, for example, an object shaped like a donut and an object shaped like a coffee cup are treated the same. That's because a donut shape can be "continuously deformed" into a coffee cup by indenting one side of the donut. But a donut-shaped object cannot be turned into a sphere or a cylinder because the hole in the donut would have to be eliminated by "gluing" the sides of the donut back together or by "cutting" the side of the donut.

Once injected into a liquid crystal, the particles behaved as predicted by topology. "Our study shows that interaction between particles and molecular alignment in liquid crystals follows the predictions of topological theorems, making it possible to use these theorems in designing new composite materials with unique properties that cannot be encountered in nature or synthesized by chemists," Smalyukh said. "These findings lay the groundwork for new applications in experimental studies of low-dimensional topology, with important potential ramifications for many branches of science and technology."

The study was co-authored by Sailing He of Zhejiang University in China; Randall Kamien and Tom Lubensky of the University of Pennsylvania, and Robert Kusner of the University of Massachusetts, Amherst.

####

For more information, please click here

Contacts:
Ivan Smalyukh

303-492-7277

Laura Snider
CU media relations
303-735-0528

Copyright © University of Colorado at Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Research partnerships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project