Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon nanotubes and lasers help to visualize blood flow

These images of a mouse’s blood vessels show the difference in resolution between traditional near-infrared fluorescence imaging (left) and Stanford’s new NIR-II technique (right).
These images of a mouse’s blood vessels show the difference in resolution between traditional near-infrared fluorescence imaging (left) and Stanford’s new NIR-II technique (right).

Abstract:
Stanford scientists have developed a fluorescence imaging technique that allows them to view the pulsing blood vessels of living animals with unprecedented clarity. Compared with conventional imaging techniques, the increase in sharpness is akin to wiping fog off your glasses.

Carbon nanotubes and lasers help to visualize blood flow

Germany | Posted on December 6th, 2012

The technique, called near infrared-II imaging, or NIR-II, involves first injecting water-soluble carbon nanotubes into the living subject's bloodstream.

The researchers then shine a laser (its light is in the near-infrared range, a wavelength of about 0.8 micron) over the subject; in this case, a mouse.

The light causes the specially designed nanotubes to fluoresce at a longer wavelength of 1-1.4 microns, which is then detected to determine the blood vessels' structure.

That the nanotubes fluoresce at substantially longer wavelengths than conventional imaging techniques is critical in achieving the stunningly clear images of the tiny blood vessels: longer wavelength light scatters less, and thus creates sharper images of the vessels. Another benefit of detecting such long wavelength light is that the detector registers less background noise since the body does not does not produce autofluorescence in this wavelength range.

In addition to providing fine details, the technique - developed by Stanford scientists Hongjie Dai, professor of chemistry; John Cooke, professor of cardiovascular medicine; and Ngan Huang, acting assistant professor of cardiothoracic surgery - has a fast image acquisition rate, allowing researchers to measure blood flow in near real time.

The ability to obtain both blood flow information and blood vessel clarity was not previously possible, and will be particularly useful in studying animal models of arterial disease, such as how blood flow is affected by the arterial blockages and constrictions that cause, among other things, strokes and heart attacks.

"For medical research, it's a very nice tool for looking at features in small animals," Dai said. "It will help us better understand some vasculature diseases and how they respond to therapy, and how we might devise better treatments."

Because NIR-II can only penetrate a centimeter, at most, into the body, it won't replace other imaging techniques for humans, but it will be a powerful method for studying animal models by replacing or complementing X-ray, CT, MRI and laser Doppler techniques.

The next step for the research, and one that will make the technology more easily accepted for use in humans, is to explore alternative fluorescent molecules, Dai said. "We'd like to find something smaller than the carbon nanotubes but that emit light at the same long wavelength, so that they can be easily excreted from the body and we can eliminate any toxicity concerns."

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper:

Related News Press

News and information

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Discoveries

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Announcements

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Tools

Relax, just break it July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Photonics/Optics/Lasers

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Future electronic components to be printed like newspapers July 20th, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project