Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > So BRIGHT, you need to wear shades: Tiny probes shine brightly to reveal the location of targeted tissues

NAVEEN GANDRA
Nanostructures called BRIGHTs seek out biomarkers on cells and then beam brightly to reveal their locations. In the tiny gap between the gold skin and the gold core of the cleaved BRIGHT (visible to the upper left), there is an electromagnetic hot spot that lights up the reporter molecules trapped there.
NAVEEN GANDRA

Nanostructures called BRIGHTs seek out biomarkers on cells and then beam brightly to reveal their locations. In the tiny gap between the gold skin and the gold core of the cleaved BRIGHT (visible to the upper left), there is an electromagnetic hot spot that lights up the reporter molecules trapped there.

Abstract:
Called BRIGHTs, the tiny probes described in the online issue of Advanced Materials on Nov. 15, bind to biomarkers of disease and, when swept by an infrared laser, light up to reveal their location.

So BRIGHT, you need to wear shades: Tiny probes shine brightly to reveal the location of targeted tissues

St. Louis, MO | Posted on November 20th, 2012

Tiny as they are, the probes are exquisitely engineered objects: gold nanoparticles covered with molecules called Raman reporters, in turn covered by a thin shell of gold that spontaneously forms a dodecahedron.

The Raman reporters are molecules whose jiggling atoms respond to a probe laser by scattering light at characteristic wavelengths.

The shell and core create an electromagnetic hotspot in the gap between them that boosts the reporters' emission by a factor of nearly a trillion.

BRIGHTs shine about 1.7 x 1011 more brightly than isolated Raman reporters and about 20 times more intensely than the next-closest competitor probe, says Srikanth Singamaneni, PhD, assistant professor of mechanical engineering and materials science in the School of Engineering & Applied Science at Washington University in St. Louis.

Goosing the signal from Raman reporters
Singamaneni and his postdoctoral research associate Naveen Gandra, PhD, tried several different probe designs before settling on BRIGHTS.

Singamaneni's lab has worked for years with Raman spectroscopy, a spectroscopic technique that is used to study the vibrational modes (bending and stretching) of molecules. Laser light interacts with these modes and the molecule then emits light at higher or lower wavelengths that are characteristic of the molecule,

Spontaneous Raman scattering, as this phenomenon is called, is by nature very weak, but 30 years ago scientists accidently stumbled on the fact that it is much stronger if the molecules are adsorbed on roughened metallic surfaces. Then they discovered that molecules attached to metallic nanoparticles shine even brighter than those attached to rough surfaces.

The intensity boost from surface-enhanced Raman scattering, or SERS, is potentially huge. "It's well-known that if you sandwich Raman reporters between two plasmonic materials, such as gold or silver, you are going to see dramatic Raman enhancement," Singamaneni says.

Originally his team tried to create intense electromagnetic hot spots by sticking smaller particles onto a larger central particle, creating core-satellite assemblies that look like daisies.

"But we realized these assemblies are not ideal for bioimaging," he says, "because the particles were held together by weak electrostatic interactions and the assemblies were going to come apart in the body."

Next they tried using something called Click chemistry to make stronger covalent bonds between the satellites and the core.

"We had some success with those assemblies," Singamaneni says, "but in the meantime we had started to wonder if we couldn't make an electromagnetic hot spot within a single nanoparticle rather than among particles.

"It occurred to us that if we put Raman reporters between the core and shell of a single particle could we create an internal hotspot."

That idea worked like a charm.

A rainbow of probes carefully dispensing drugs?
The next step, says Singamaneni, is to test BRIGHTS in vivo in the lab of Sam Achilefu, PhD, professor of radiology in the School of Medicine.

But he's already thinking of ways to get even more out of the design.

Since different Raman reporter molecules respond at different wavelengths, Singamaneni says, it should be possible to design BRIGHTS targeted to different biomolecules that also have different Raman reporters and then monitor them all simultaneously with the same light probe.

And he and Gandra would like to combine BRIGHTS with a drug container of some kind, so that the containers could be tracked in the body and the drug and released only when it reached the target tissue, thus avoiding many of the side effects patients dread.

Good things, as they say, come in small packages.

####

For more information, please click here

Contacts:
Diana Lutz

314-935-5272

Copyright © Washington University in St. Louis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Imaging

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Spectral Surface Mapping with Microscopic Resolution: CRAIC Technologies introduces Spectral Surface Mapping™ (S2M™) software November 18th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Nanomedicine

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Tools

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Field-emission plug-and-play solution for microwave electron guns: To simplify the electron emission mechanism involved in microwave electron guns, a team of researchers has created and demonstrated a field-emission plug-and-play solution based on ultrananocrystalline diamond November 18th, 2014

Photonics/Optics/Lasers

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE