Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > So BRIGHT, you need to wear shades: Tiny probes shine brightly to reveal the location of targeted tissues

NAVEEN GANDRA
Nanostructures called BRIGHTs seek out biomarkers on cells and then beam brightly to reveal their locations. In the tiny gap between the gold skin and the gold core of the cleaved BRIGHT (visible to the upper left), there is an electromagnetic hot spot that lights up the reporter molecules trapped there.
NAVEEN GANDRA

Nanostructures called BRIGHTs seek out biomarkers on cells and then beam brightly to reveal their locations. In the tiny gap between the gold skin and the gold core of the cleaved BRIGHT (visible to the upper left), there is an electromagnetic hot spot that lights up the reporter molecules trapped there.

Abstract:
Called BRIGHTs, the tiny probes described in the online issue of Advanced Materials on Nov. 15, bind to biomarkers of disease and, when swept by an infrared laser, light up to reveal their location.

So BRIGHT, you need to wear shades: Tiny probes shine brightly to reveal the location of targeted tissues

St. Louis, MO | Posted on November 20th, 2012

Tiny as they are, the probes are exquisitely engineered objects: gold nanoparticles covered with molecules called Raman reporters, in turn covered by a thin shell of gold that spontaneously forms a dodecahedron.

The Raman reporters are molecules whose jiggling atoms respond to a probe laser by scattering light at characteristic wavelengths.

The shell and core create an electromagnetic hotspot in the gap between them that boosts the reporters' emission by a factor of nearly a trillion.

BRIGHTs shine about 1.7 x 1011 more brightly than isolated Raman reporters and about 20 times more intensely than the next-closest competitor probe, says Srikanth Singamaneni, PhD, assistant professor of mechanical engineering and materials science in the School of Engineering & Applied Science at Washington University in St. Louis.

Goosing the signal from Raman reporters
Singamaneni and his postdoctoral research associate Naveen Gandra, PhD, tried several different probe designs before settling on BRIGHTS.

Singamaneni's lab has worked for years with Raman spectroscopy, a spectroscopic technique that is used to study the vibrational modes (bending and stretching) of molecules. Laser light interacts with these modes and the molecule then emits light at higher or lower wavelengths that are characteristic of the molecule,

Spontaneous Raman scattering, as this phenomenon is called, is by nature very weak, but 30 years ago scientists accidently stumbled on the fact that it is much stronger if the molecules are adsorbed on roughened metallic surfaces. Then they discovered that molecules attached to metallic nanoparticles shine even brighter than those attached to rough surfaces.

The intensity boost from surface-enhanced Raman scattering, or SERS, is potentially huge. "It's well-known that if you sandwich Raman reporters between two plasmonic materials, such as gold or silver, you are going to see dramatic Raman enhancement," Singamaneni says.

Originally his team tried to create intense electromagnetic hot spots by sticking smaller particles onto a larger central particle, creating core-satellite assemblies that look like daisies.

"But we realized these assemblies are not ideal for bioimaging," he says, "because the particles were held together by weak electrostatic interactions and the assemblies were going to come apart in the body."

Next they tried using something called Click chemistry to make stronger covalent bonds between the satellites and the core.

"We had some success with those assemblies," Singamaneni says, "but in the meantime we had started to wonder if we couldn't make an electromagnetic hot spot within a single nanoparticle rather than among particles.

"It occurred to us that if we put Raman reporters between the core and shell of a single particle could we create an internal hotspot."

That idea worked like a charm.

A rainbow of probes carefully dispensing drugs?
The next step, says Singamaneni, is to test BRIGHTS in vivo in the lab of Sam Achilefu, PhD, professor of radiology in the School of Medicine.

But he's already thinking of ways to get even more out of the design.

Since different Raman reporter molecules respond at different wavelengths, Singamaneni says, it should be possible to design BRIGHTS targeted to different biomolecules that also have different Raman reporters and then monitor them all simultaneously with the same light probe.

And he and Gandra would like to combine BRIGHTS with a drug container of some kind, so that the containers could be tracked in the body and the drug and released only when it reached the target tissue, thus avoiding many of the side effects patients dread.

Good things, as they say, come in small packages.

####

For more information, please click here

Contacts:
Diana Lutz

314-935-5272

Copyright © Washington University in St. Louis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Imaging

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Tools

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Photonics/Optics/Lasers

Physicists build reversible laser tractor beam October 20th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE