Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Episil Selects Berkeley Design Automation AFS Nano for Analog and Power Semiconductor Devices: Delivers Nanometer SPICE accuracy and >10x Price/Performance for Analog Circuits

Abstract:
Berkeley Design Automation, Inc., provider of the world's fastest nanometer circuit verification, today announced that Episil Technology, Inc., a pure-play foundry house specializing in epitaxial and silicon wafer foundry services for power and analog semiconductor products, has selected the company's AFS Nano SPICE simulator for analog and power device characterization.

Episil Selects Berkeley Design Automation AFS Nano for Analog and Power Semiconductor Devices: Delivers Nanometer SPICE accuracy and >10x Price/Performance for Analog Circuits

Santa Clara, CA | Posted on November 8th, 2012

"Having a cost effective circuit simulator that delivers the required accuracy and performance is a critical component of a competitive characterization strategy," said Phoenix Deng, CAD Dept. Manager, Technology Development Division, R&D & Operation Support Center, at Episil. "AFS Nano delivers block-level simulation with nanometer SPICE accuracy and >10x price/performance for our analog and power devices. This makes it compelling even compared to traditional SPICE tools."

The Analog FastSPICE Platform provides the world's fastest circuit verification for nanometer analog, RF, mixed-signal, and custom digital circuits. Foundry certified to 20nm, the AFS Platform delivers nanometer SPICE accuracy 5x-10x faster on a single core and >2x faster on multicore systems versus any other simulator. For circuit characterization, the AFS Platform includes the industry's only comprehensive silicon-accurate device noise analysis and delivers near-linear performance scaling with the number of cores. For large circuits, it delivers >10M-element capacity, the fastest near-SPICE-accurate simulation, and the fastest, most accurate mixed-signal simulation. Available licenses include AFS circuit simulation, AFS Transient Noise Analysis, AFS RF Analysis, AFS Co-Simulation, and AFS Nano SPICE.

"We are excited that Episil Technology selected AFS Nano for verification of their analog and power devices," said Ravi Subramanian, president and CEO of Berkeley Design Automation. "Episil's selection of AFS Nano further validates the strong competitive advantage and price/performance benefits the Analog FastSPICE Platform provides to the semiconductor ecosystem."

####

About Berkeley Design Automation, Inc.
Berkeley Design Automation, Inc. is the recognized leader in nanometer circuit verification. The company combines the world’s fastest nanometer circuit verification platform, Analog FastSPICE, with exceptional application expertise to uniquely address nanometer circuit design challenges. More than 100 companies rely on Berkeley Design Automation to verify their nanometer-scale circuits. Berkeley Design Automation has received numerous industry awards and is widely recognized for its technology leadership and contributions to the electronics industry. The company is privately held and backed by Woodside Fund, Bessemer Venture Partners, Panasonic Corp., NTT Corp., IT-Farm, and MUFJ Capital. For more information, visit www.berkeley-da.com.

Analog FastSPICE, AFS Nano, and WaveCrave are trademarks of Berkeley Design Automation, Inc. Berkeley Design and BDA are registered trademarks of Berkeley Design Automation, Inc. Any other trademarks or trade names mentioned are the property of their respective owners.

For more information, please click here

Contacts:
Cayenne Communication LLC
Michelle Clancy, 252-940-0981

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

New-Contracts/Sales/Customers

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Nanometrics Achieves Record 3D-NAND Bookings Quarter: A Record 3D-NAND Bookings Quarter, both in Aggregate and for Each of Three Key Customers March 28th, 2016

Keystone Nano selected by National Cancer Institute to participate in BIO March 23rd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic