Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Lockheed Martin Advanced Technology Center Develops Revolutionary Nanotechnology Copper Solder

Abstract:
Scientists in the Advanced Materials and Nanosystems directorate at the Lockheed Martin Space Systems Advanced Technology Center (ATC) in Palo Alto have developed a revolutionary nanotechnology copper-based electrical interconnect material, or solder, that can be processed around 200 °C. Once fully optimized, the CuantumFuse™ solder material is expected to produce joints with up to 10 times the electrical and thermal conductivity compared to tin-based materials currently in use. Applications in military and commercial systems are currently under consideration.

Lockheed Martin Advanced Technology Center Develops Revolutionary Nanotechnology Copper Solder

Palo Alto, CA | Posted on October 25th, 2012

"We are enormously excited about our CuantumFuse™ breakthrough, and are very pleased with the progress we're making to bring it to full maturity," said Dr. Kenneth Washington, vice president of the ATC. "We pride ourselves on providing innovations like CuantumFuse™ for space and defense applications, but in this case we are excited about the enormous potential of CuantumFuse™ in defense and commercial manufacturing applications."

In the past, nearly all solders contained lead, but there is now an urgent need for lead-free solder because of a worldwide effort to phase out hazardous materials in electronics. The European Union implemented lead-free solder in 2006. The State of California did so on January 1, 2007, followed soon thereafter by New Jersey and New York City.

The principal lead-free replacement - a combination of tin, silver and copper (Sn/Ag/Cu) - has proven acceptable to the consumer electronics industry that deals mostly with short product life cycles and relatively benign operating environments. However, multiple issues have arisen: high processing temperatures drive higher cost, the high tin content can lead to tin whiskers that can cause short circuits, and fractures are common in challenging environments, making it difficult to quantify reliability. These reliability concerns are particularly acute in systems for the military, aerospace, medical, oil and gas, and automotive industries. In such applications, long service life and robustness of components are critical, where vibration, shock, thermal cycling, humidity, and extreme temperature use can be common.

"To address these concerns, we realized a fundamentally new approach was needed to solve the lead-free solder challenge," said Dr. Alfred Zinn, materials scientist at the ATC and inventor of CuantumFuse™ solder. "Rather than finding another multi-component alloy, our team devised a solution based on the well-known melting point depression of materials in nanoparticle form. Given this nanoscale phenomenon, we've produced a solder paste based on pure copper."

A number of requirements were addressed in the development of the CuantumFuse™ solder paste including, but not limited to: 1) sufficiently small nanoparticle size, 2) a reasonable size distribution, 3) reaction scalability, 4) low cost synthesis, 5) oxidation and growth resistance at ambient conditions, and 6) robust particle fusion when subjected to elevated temperature. Copper was chosen because it is already used throughout the electronics industry as a trace, interconnect, and pad material, minimizing compatibility issues. It is cheap (1/4th the cost of tin; 1/100th the cost of silver, and 1/10,000th that of gold), abundant, and has 10 times the electrical and thermal conductivity compared to commercial tin-based solder.

The ATC has demonstrated CuantumFuse™ with the assembly of a small test camera board. "These accomplishments are extremely exciting and promising, but we still have to solve a number of technical challenges before CuantumFuse™ will be ready for routine use in military and commercial applications," said Mike Beck, director of the Advanced Materials and Nanosystems group at the ATC. Solving these challenges, such as improving bond strength, is the focus on the group's ongoing research and development.

The ATC is the research and development organization of Lockheed Martin Space Systems Company (LMSSC) and is engaged in the research, development, and transition of technologies in phenomenology & sensors, optics & electro-optics, laser radar, RF & photonics, guidance & navigation, space science & instrumentation, advanced materials & nanosystems, thermal sciences & cryogenics, and modeling, simulation & information science.

####

About Lockheed Martin
LMSSC, a major operating unit of Lockheed Martin Corporation, designs and develops, tests, manufactures and operates a full spectrum of advanced-technology systems for national security and military, civil government and commercial customers. Chief products include human space flight systems; a full range of remote sensing, navigation, meteorological and communications satellites and instruments; space observatories and interplanetary spacecraft; laser radar; ballistic missiles; missile defense systems; and nanotechnology research and development.

Headquartered in Bethesda, Md., Lockheed Martin is a global security and aerospace company that employs about 120,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services. The corporation's net sales for 2011 were $46.5 billion.

For more information, please click here

Contacts:
Buddy Nelson
(510) 797-0349

Copyright © Lockheed Martin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Military

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Aerospace/Space

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating December 4th, 2014

Atmospheric carbon dioxide used for energy storage products December 2nd, 2014

Deep Space Industries and Solid Prototype Announce a Strategic Partnership: Solid Prototype Inc integrates with DSI’s spacecraft design process, helping reduce costs and decrease turnaround time December 1st, 2014

Industrial

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

Simple, Biocompatible Method Developed for Production of Cerium Oxide Nanoparticles December 9th, 2014

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE