Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NRL Demonstrates High Durability of Nanotube Transistors to the Harsh Space Environment

A locally etched back-gated field effect transistor (FET) structure with a deposited dielectric layer. Thick dielectric layers are highly susceptible to radiation induced charge build-up, which is known to cause threshold voltage shifts and increased leakage in metal-oxide semiconductor (MOS) devices. To mitigate these effects, the dielectric layer is locally etched in the active region of the back-gated FET. A gate dielectric material is then deposited (depicted in red) over the entire substrate.
(Photo: U.S. Naval Research Laboratory)
A locally etched back-gated field effect transistor (FET) structure with a deposited dielectric layer. Thick dielectric layers are highly susceptible to radiation induced charge build-up, which is known to cause threshold voltage shifts and increased leakage in metal-oxide semiconductor (MOS) devices. To mitigate these effects, the dielectric layer is locally etched in the active region of the back-gated FET. A gate dielectric material is then deposited (depicted in red) over the entire substrate.

(Photo: U.S. Naval Research Laboratory)

Abstract:
U.S. Naval Research Laboratory electronics science and technology engineers demonstrate the ability of single walled carbon nanotube transistors (SWCNTs) to survive the harsh space environment, investigating the effects of ionizing radiation on the crystalline structures and further supporting the development of SWCNT-based nanoelectronics for use in harsh radiation environments.

NRL Demonstrates High Durability of Nanotube Transistors to the Harsh Space Environment

Washington, DC | Posted on September 21st, 2012

"One of the primary challenges for space electronics is mitigating the susceptibility of prolonged exposure to radiation that exists in the charged particle belts that encircle Earth," said Cory Cress, materials research engineer. "These are the first controlled demonstrations showing little performance degradation and high tolerance to cumulative ionizing radiation exposure."

Radiation effects take two forms, transient effects and cumulative effects. The former, referred to as single effect transients (SETs), result from a direct strike by an ionizing particle in space that causes a current pulse in the device. If this pulse propagates through the circuit it can cause data corruption that can be extremely detrimental to someone that relies on that signal, such as a person using GPS for navigation. NRL researchers have recently predicted that such effects are nearly eliminated for SWCNT-based nanoelectronics due to their small size, low density, and inherent isolation from neighboring SWCNTs in a device.

The cumulative effects in traditional electronics results from trapped charges in the oxides of the devices, including the gate oxide and those used to isolate adjacent devices, the latter being primary source of radiation-induced performance degradation in state-of-the-art complementary metal-oxide semiconductor (CMOS) devices. The effect is manifested as a shift in the voltage needed to turn the transistor on or off. This initially results in power leakage, but can eventually cause failure of the entire circuit.

By developing a SWCNT structure with a thin gate oxide made from thin silicon oxynitride, NRL researchers recently demonstrated SWCNT transistors that do not suffer from such radiation-induced performance changes. This hardened dielectric material and naturally isolated one-dimensional SWCNT structure makes them extremely radiation tolerant.

The ability for SWCNT-based transistors to be both tolerant to transient and cumulative effects potentially enables future space electronics with less redundancy and error-correction circuitry, while maintaining the same quality of fidelity. This reduction in overhead alone would greatly reduce power and improve performance over existing space-electronic systems even if the SWCNT-based transistors operate at the same speed as current technologies. Even greater benefits are foreseeable in the future, once devices are developed that exceed the performance of silicon-based transistors.

####

About U.S. Naval Research Laboratory
The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 85 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

For more information, please click here

Contacts:
U.S. Naval Research Laboratory
Daniel Parry, 202-767-2541

Copyright © U.S. Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Laboratories

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Brookhaven Science Associates Awarded Brookhaven Lab Management Contract Battelle/Stony Brook University partnership retains contract it has held since 1998 November 13th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Chip Technology

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Military

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

Aerospace/Space

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

Mathematical Model Predicts Vibrating Behavior of Conical Shell's Nanocomposite Objects November 15th, 2014

Mining entrepreneur Julian Malnic Joins Deep Space Industries’ Board: Deep Space Industries welcomes a prolific mining entrepreneur and accomplished company builder, Julian Malnic, to its Board of Directors November 14th, 2014

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films November 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE