Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Electronics without Current: Finnish Team to Research the Future of Nanoelectronics

Abstract:
Researchers at Tampere University of Technology, Finland, will explore paths toward a completely new way of designing and making logic circuits that consume no current and can be written and read with light.

Electronics without Current: Finnish Team to Research the Future of Nanoelectronics

Posted on September 12th, 2012

The Academy of Finland has granted €1.6 million to a consortium based at Tampere University of Technology (TUT) under the "Programmable Materials" funding scheme. The project runs from 1 September 2012 to 31 August 2016 and is entitled "Photonically Addressed Zero Current Logic through Nano-Assembly of Functionalised Nanoparticles to Quantum Dot Cellular Automata" ( PhotonicQCA).

The project combines expertise from the departments of Electronics, Chemistry and Bioengineering and Optoelectronics Research Centre (ORC) to look at the unique possibilities of combining organic chemistry, semiconductor growth and nanofabrication to put the basis of a visionary technology platform for future nanoelectronic devices and logic circuits. PhotonicQCA fits well to the objectives of the Programmable Materials scheme, which looks for visionary new ways to use materials.

The key idea behind the project is the so-called quantum dot cellular automaton (QCA). In QCAs, pieces of semiconductor so small that single electronic charges can be measured and manipulated are arranged into domino like cells. Like dominos, these cells can be arranged so that the position of the charges in one cell affects the position of the charges in the next cell, which allows making logical circuits out of these "quantum dominos". But, no charge flows from one cell to the next, i.e. no current. This, plus the extremely small size of QCAs, means that they could be used to make electronic circuits at densities and speeds not possible now. However, realisation of the dots and cells and making electrical connections to them has been a huge challenge.

Professors Donald Lupo from Department of Electronics, Mircea Guina and Tapio Niemi from Optoelectronics Research Centre (ORC), and Nikolai Tkachenko and Helge Lemmetyinen from Department of Chemistry and Bioengineering, want to investigate a completely new approach. They want to attach tailor-made molecules, optical nanoantennas, to the quantum dots, which can inject a charge into a dot or enable charge transfer between the dots when light of the right wavelength shines on them. This concept will be combined with the expertise at TUT's Optoelectronics Research Centre concerning "site-specific epitaxy", i.e. growing the quantum dots in the right place using nanofabrication techniques, which would enable a solid-state technology platform compatible with standard electronic circuits. If this works, then someday QCAs could be written and read with light.

Project coordinator, Professor Donald Lupo says: "As far as we can tell, no one has ever tried anything like this before. It's a completely new idea. It was our excellent inter-departmental communication that identified a unique combination of know-how that let us come up with this concept. It's highly risky because of many technological challenges, but the potential is amazing; being able to get rid of electrical connections and write and read nanoelectronic circuits using only light would be a huge breakthrough".

####

For more information, please click here

Contacts:
Professor Donald Lupo
Department of Electronics
tel. +358 40 849 0614


Professor Mircea Guina
Optoelectronics Research Centre (ORC)
tel. +358 40 849 0004


Professor Nikolai Tkachenko
Department of Chemistry and Bioengineering
tel. +358 40 748 4160

Copyright © Tampere University of Technology (TUT)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The Academy of Finland, “Programmable Materials” funding scheme:

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Chip Technology

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Discoveries

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Quantum Dots/Rods

Superfast light source made from artificial atom April 28th, 2016

Quantum dots enhance light-to-current conversion in layered semiconductors: Research demonstrates promise of a new approach for improving solar cells, photocatalysts, light sensors, and other optoelectronic devices April 11th, 2016

Revealing the ion transport at nanoscale March 30th, 2016

Sweet 'quantum dots' light the way for new HIV and Ebola treatment March 15th, 2016

Photonics/Optics/Lasers

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic