Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Electronics without Current: Finnish Team to Research the Future of Nanoelectronics

Abstract:
Researchers at Tampere University of Technology, Finland, will explore paths toward a completely new way of designing and making logic circuits that consume no current and can be written and read with light.

Electronics without Current: Finnish Team to Research the Future of Nanoelectronics

Posted on September 12th, 2012

The Academy of Finland has granted €1.6 million to a consortium based at Tampere University of Technology (TUT) under the "Programmable Materials" funding scheme. The project runs from 1 September 2012 to 31 August 2016 and is entitled "Photonically Addressed Zero Current Logic through Nano-Assembly of Functionalised Nanoparticles to Quantum Dot Cellular Automata" ( PhotonicQCA).

The project combines expertise from the departments of Electronics, Chemistry and Bioengineering and Optoelectronics Research Centre (ORC) to look at the unique possibilities of combining organic chemistry, semiconductor growth and nanofabrication to put the basis of a visionary technology platform for future nanoelectronic devices and logic circuits. PhotonicQCA fits well to the objectives of the Programmable Materials scheme, which looks for visionary new ways to use materials.

The key idea behind the project is the so-called quantum dot cellular automaton (QCA). In QCAs, pieces of semiconductor so small that single electronic charges can be measured and manipulated are arranged into domino like cells. Like dominos, these cells can be arranged so that the position of the charges in one cell affects the position of the charges in the next cell, which allows making logical circuits out of these "quantum dominos". But, no charge flows from one cell to the next, i.e. no current. This, plus the extremely small size of QCAs, means that they could be used to make electronic circuits at densities and speeds not possible now. However, realisation of the dots and cells and making electrical connections to them has been a huge challenge.

Professors Donald Lupo from Department of Electronics, Mircea Guina and Tapio Niemi from Optoelectronics Research Centre (ORC), and Nikolai Tkachenko and Helge Lemmetyinen from Department of Chemistry and Bioengineering, want to investigate a completely new approach. They want to attach tailor-made molecules, optical nanoantennas, to the quantum dots, which can inject a charge into a dot or enable charge transfer between the dots when light of the right wavelength shines on them. This concept will be combined with the expertise at TUT's Optoelectronics Research Centre concerning "site-specific epitaxy", i.e. growing the quantum dots in the right place using nanofabrication techniques, which would enable a solid-state technology platform compatible with standard electronic circuits. If this works, then someday QCAs could be written and read with light.

Project coordinator, Professor Donald Lupo says: "As far as we can tell, no one has ever tried anything like this before. It's a completely new idea. It was our excellent inter-departmental communication that identified a unique combination of know-how that let us come up with this concept. It's highly risky because of many technological challenges, but the potential is amazing; being able to get rid of electrical connections and write and read nanoelectronic circuits using only light would be a huge breakthrough".

####

For more information, please click here

Contacts:
Professor Donald Lupo
Department of Electronics
tel. +358 40 849 0614


Professor Mircea Guina
Optoelectronics Research Centre (ORC)
tel. +358 40 849 0004


Professor Nikolai Tkachenko
Department of Chemistry and Bioengineering
tel. +358 40 748 4160

Copyright © Tampere University of Technology (TUT)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The Academy of Finland, “Programmable Materials” funding scheme:

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Quantum Dots/Rods

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Engineered hybrid crystal opens new frontiers for high-efficiency lighting: University of Toronto researchers successfully combine 2 different materials to create new hyper-efficient light-emitting crystal July 16th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Photonics/Optics/Lasers

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project