Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-FTIR - A new era in modern analytical chemistry

Abstract:
Researchers from the nanoscience research center NanoGUNE (San Sebastian, Spain), the university of Munich (LMU, Germany) and Neaspec GmbH (Martinsried, Germany) present a new instrumental development that solves a prime question of materials science and nanotechnology: how to chemically identify materials at the nanometer scale (F. Huth et al., Nano Letters, 2012, DOI: 10.1021/nl301159v).

Nano-FTIR - A new era in modern analytical chemistry

San Sebastian, Spain | Posted on July 27th, 2012

An ultimate goal in modern chemistry and materials science is the non-invasive chemical mapping of materials with nanometer scale resolution. A variety of high-resolution imaging techniques exist (e.g. electron microscopy or scanning probe microscopy), however, their chemical sensitivity cannot meet the demands of modern chemical nano-analytics. Optical spectroscopy, on the other hand, offers high chemical sensitivity but its resolution is limited by diffraction to about half the wavelength, thus preventing nanoscale resolved chemical mapping.

Nanoscale chemical identification and mapping of materials now becomes possible with nano-FTIR, an optical technique that combines scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy. By illuminating the metalized tip of an atomic force microscope (AFM) with a broadband infrared laser, and analyzing the backscattered light with a specially designed Fourier Transform spectrometer, the researchers could demonstrate local infrared spectroscopy with a spatial resolution of less than 20 nm. "Nano-FTIR thus allows for fast and reliable chemical identification of virtually any infrared-active material on the nanometer scale", says Florian Huth, who performed the experiments.

An important aspect of enormous practical relevance is that the nano-FTIR spectra match extremely well with conventional FTIR spectra, while the spatial resolution is increased by more than a factor of 300 compared to conventional infrared spectroscopy. "The high sensitivity to chemical composition combined with ultra-high resolution makes nano-FTIR a unique tool for research, development and quality control in polymer chemistry, biomedicine and pharmaceutical industry" concludes Rainer Hillenbrand, leader of the Nanooptics group at nanoGUNE.

For example, nano-FTIR can be applied for the chemical identification of nanoscale sample contaminations. Fig. 1 shows AFM images of a PMMA film on a Si surface. While the AFM phase contrast indicates the presence of a 100 nm size contamination, the determination of its chemical identity remains elusive from these images. Using nano-FTIR to record a local infrared spectrum in the center of the particle and comparing it with standard FTIR database spectra, the contamination can be identified as a PDMS particle.

####

For more information, please click here

Contacts:
Rainer Hillenbrand


Enrique Zarate
CIC nanoGUNE
Contact details:

(+34) 943574024

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Chemistry

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Synthesis of Nanostructures with Controlled Shape, Size in Iran September 22nd, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Imaging

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Discoveries

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Announcements

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Synthesis of Nanostructures with Controlled Shape, Size in Iran September 22nd, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Tools

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE