Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-FTIR - A new era in modern analytical chemistry

Abstract:
Researchers from the nanoscience research center NanoGUNE (San Sebastian, Spain), the university of Munich (LMU, Germany) and Neaspec GmbH (Martinsried, Germany) present a new instrumental development that solves a prime question of materials science and nanotechnology: how to chemically identify materials at the nanometer scale (F. Huth et al., Nano Letters, 2012, DOI: 10.1021/nl301159v).

Nano-FTIR - A new era in modern analytical chemistry

San Sebastian, Spain | Posted on July 27th, 2012

An ultimate goal in modern chemistry and materials science is the non-invasive chemical mapping of materials with nanometer scale resolution. A variety of high-resolution imaging techniques exist (e.g. electron microscopy or scanning probe microscopy), however, their chemical sensitivity cannot meet the demands of modern chemical nano-analytics. Optical spectroscopy, on the other hand, offers high chemical sensitivity but its resolution is limited by diffraction to about half the wavelength, thus preventing nanoscale resolved chemical mapping.

Nanoscale chemical identification and mapping of materials now becomes possible with nano-FTIR, an optical technique that combines scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy. By illuminating the metalized tip of an atomic force microscope (AFM) with a broadband infrared laser, and analyzing the backscattered light with a specially designed Fourier Transform spectrometer, the researchers could demonstrate local infrared spectroscopy with a spatial resolution of less than 20 nm. "Nano-FTIR thus allows for fast and reliable chemical identification of virtually any infrared-active material on the nanometer scale", says Florian Huth, who performed the experiments.

An important aspect of enormous practical relevance is that the nano-FTIR spectra match extremely well with conventional FTIR spectra, while the spatial resolution is increased by more than a factor of 300 compared to conventional infrared spectroscopy. "The high sensitivity to chemical composition combined with ultra-high resolution makes nano-FTIR a unique tool for research, development and quality control in polymer chemistry, biomedicine and pharmaceutical industry" concludes Rainer Hillenbrand, leader of the Nanooptics group at nanoGUNE.

For example, nano-FTIR can be applied for the chemical identification of nanoscale sample contaminations. Fig. 1 shows AFM images of a PMMA film on a Si surface. While the AFM phase contrast indicates the presence of a 100 nm size contamination, the determination of its chemical identity remains elusive from these images. Using nano-FTIR to record a local infrared spectrum in the center of the particle and comparing it with standard FTIR database spectra, the contamination can be identified as a PDMS particle.

####

For more information, please click here

Contacts:
Rainer Hillenbrand


Enrique Zarate
CIC nanoGUNE
Contact details:

(+34) 943574024

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Chemistry

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Imaging

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Discoveries

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project