Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > World record: Scientists from northern Germany produce the lightest material in the world

This graphic shows a detail of the world’s lightest material: Aerographite. Open carbon tubes form a fine mesh and offer a low density of 0.2 milligram per cubic centimetre. The picture was taken with a scanning electron microscope (TEM).
Source: TUHH
This graphic shows a detail of the world’s lightest material: Aerographite. Open carbon tubes form a fine mesh and offer a low density of 0.2 milligram per cubic centimetre. The picture was taken with a scanning electron microscope (TEM).

Source: TUHH

Abstract:
A network of porous carbon tubes that is three-dimensionally interwoven at nano and micro level - this is the lightest material in the world. It weights only 0.2 milligrams per cubic centimetre, and is therefore 75 times lighter than Styrofoam, but it is very strong nevertheless. Scientists of Kiel University (KU) and Hamburg University of Technology (TUHH) have named their joint creation "Aerographite". The scientific results were published as the title story in the scientific journal Advanced Materials on July, 3rd. Today (Tuesday, July 17th) it is presented to the public.

World record: Scientists from northern Germany produce the lightest material in the world

Kiel, Germany | Posted on July 17th, 2012

The properties

It is jet-black, remains stable, is electrically conductive, ductile and non-transparent. With these unique properties and its very low density the carbon-made material "Aerographite" clearly outperformes all similar materials. „Our work is causing great discussions in the scientific community. Aerographite weights four times less than world-record-holder up to now", says Matthias Mecklenburg, co-author and Ph.D. student at the TUHH. The hitherto lightest material of the world, a nickel material that was presented to the public about six months ago, is also constructed of tiny tubes. Only, nickel has a higher atomic mass than carbon. "Also, we are able to produce tubes with porous walls. That makes them extremely light", adds Arnim Schuchard, co-author and Ph.D. student at Kiel University. Professor Lorenz Kienle and Dr. Andriy Lotnyk were able to decode the material's atomic structure with the aid of a transmission electron microscope (TEM).

Despite of its low weight Aerographite is highly resilient. While lightweight materials normally withstand compression but not tension, Aerographite features both: an excellent compression and tension load. It is able to be compressed up to 95 percent and be pulled back to its original form without any damage, says professor Rainer Adelung of Kiel University. "Up to a certain point the Aerographite will become even more solid and therefore stronger than before", he points out. Other materials become weaker and less stable when exposed to such stress. "Also, the newly constructed material absorbs light rays almost completely. One could say it creates the blackest black", acknowledges Hamburg's Professor Karl Schulte.

The construction

"Think of the Aerographite as an ivy-web, which winds itself around a tree. And than take away the tree", Adelung describes the construction process. The "tree" is a so-called sacrificial template, a means to an end. The Kiel-team, consisting of Arnim Schuchardt, Rainer Adelung, Yogendra Mishra and Sören Kaps, used a zinc oxide in powder form. By heating this up to 900 degrees Celsius, it was transformed into a crystalline form.

From this material, the scientists from Kiel made a kind of pill. In it, the zinc-oxide formed micro and nano structues, so called tetrapods (illustration # 4). These interweave and construct a stable entity of particles that form the porous pill. In that way, the tetrapods produce the network that is the basis for Aerographite.

In a next step, the pill is positioned into the reactor for chemical vapour deposition at TUHH and heated up to 760 degrees Celsius. "In a streaming gas atmosphere that is enriched with carbon, the zinc oxide is being equipped with a graphite coating of only a few atomic layers. This forms the tanged-web structures of the Aerographite. Simultaneously, hydrogen is introduced. It reacts with the oxygen in the zinc oxide and results in the emission of steam and zinc gas", continues Schulte. The remains are the characteristic interwoven, tube-like carbon structure. TUHH-scientist Mecklenburg: "The faster we get the zinc out, the more porous the tube's walls get and the lighter is the material. There is considerable scope." Schuchard adds: "The great thing is that we are able to affect the characteristics of the Aerographite; the template form and the separation process are constantly being adjusted in Kiel and Hamburg."

The application

Due to its unique material characteristics, Aerographite could fit onto the electrodes of Li-ion batteries. In that case, only a minimal amount of battery electrolyte would be necessary, which then would lead to an important reduction in the battery's weight. This purpose was sketched by the authors in a recently published article. Areas of application for these small batteries might be electronic cars or e-bikes. Thus, the material contributes to the development of green means of transportation.

According to the scientists, further areas of application could be the electrical conductivity of synthetic materials. Non-conductive plastic could be transformed, without causing it to gain weight. Statics, which occur to most people daily, could hence be avoided.

The number of further possible areas of application for the lightest material in the world is limitless. After officially acknowledging Aerographite, scientists of various research areas were bursting with ideas. One possibility might be the use in electronics for aviation and satellites because they have to endure high amounts of vibration. Also, the material might be a promising aid in water purification. It might act as an adsorbent for persistent water pollutants for it could oxidise or decompose and remove these. Here, scientists would benefit from Aerographite's advantages namely mechanical stability, electronic conductivity and a large surface. Another possibility might be the purification of ambient air for incubators or ventilation.

####

For more information, please click here

Contacts:
Kiel University
Press Services
Claudia Eulitz
phone: 0431/880 7110


TU Hamburg-Harburg
Press Services
Jutta Katharina Werner
Telefon: +49 40 428784321

Copyright © Kiel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication: „Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance"; DOI: 10.1002/adma.201200491:

Video: Aerographite can be compressed up to 95 percent and be pulled back to its original form. In contrast to other materials, it thereby just becomes stiffer (Diameter nine millimetres).

Video: The very small masses of the Aerographite allow quick changes of direction. It raises itself in an erect position, jumps onto the plastic pole and back onto the table: In that way Aerographite gets electric charge from the pole and emits it to the table.

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Materials/Metamaterials

Production of Biocompatible Polymers in Iran October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Water

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Aerospace/Space

New evidence for an exotic, predicted superconducting state October 27th, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE