Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > World record: Scientists from northern Germany produce the lightest material in the world

This graphic shows a detail of the world’s lightest material: Aerographite. Open carbon tubes form a fine mesh and offer a low density of 0.2 milligram per cubic centimetre. The picture was taken with a scanning electron microscope (TEM).
Source: TUHH
This graphic shows a detail of the world’s lightest material: Aerographite. Open carbon tubes form a fine mesh and offer a low density of 0.2 milligram per cubic centimetre. The picture was taken with a scanning electron microscope (TEM).

Source: TUHH

Abstract:
A network of porous carbon tubes that is three-dimensionally interwoven at nano and micro level - this is the lightest material in the world. It weights only 0.2 milligrams per cubic centimetre, and is therefore 75 times lighter than Styrofoam, but it is very strong nevertheless. Scientists of Kiel University (KU) and Hamburg University of Technology (TUHH) have named their joint creation "Aerographite". The scientific results were published as the title story in the scientific journal Advanced Materials on July, 3rd. Today (Tuesday, July 17th) it is presented to the public.

World record: Scientists from northern Germany produce the lightest material in the world

Kiel, Germany | Posted on July 17th, 2012

The properties

It is jet-black, remains stable, is electrically conductive, ductile and non-transparent. With these unique properties and its very low density the carbon-made material "Aerographite" clearly outperformes all similar materials. „Our work is causing great discussions in the scientific community. Aerographite weights four times less than world-record-holder up to now", says Matthias Mecklenburg, co-author and Ph.D. student at the TUHH. The hitherto lightest material of the world, a nickel material that was presented to the public about six months ago, is also constructed of tiny tubes. Only, nickel has a higher atomic mass than carbon. "Also, we are able to produce tubes with porous walls. That makes them extremely light", adds Arnim Schuchard, co-author and Ph.D. student at Kiel University. Professor Lorenz Kienle and Dr. Andriy Lotnyk were able to decode the material's atomic structure with the aid of a transmission electron microscope (TEM).

Despite of its low weight Aerographite is highly resilient. While lightweight materials normally withstand compression but not tension, Aerographite features both: an excellent compression and tension load. It is able to be compressed up to 95 percent and be pulled back to its original form without any damage, says professor Rainer Adelung of Kiel University. "Up to a certain point the Aerographite will become even more solid and therefore stronger than before", he points out. Other materials become weaker and less stable when exposed to such stress. "Also, the newly constructed material absorbs light rays almost completely. One could say it creates the blackest black", acknowledges Hamburg's Professor Karl Schulte.

The construction

"Think of the Aerographite as an ivy-web, which winds itself around a tree. And than take away the tree", Adelung describes the construction process. The "tree" is a so-called sacrificial template, a means to an end. The Kiel-team, consisting of Arnim Schuchardt, Rainer Adelung, Yogendra Mishra and Sören Kaps, used a zinc oxide in powder form. By heating this up to 900 degrees Celsius, it was transformed into a crystalline form.

From this material, the scientists from Kiel made a kind of pill. In it, the zinc-oxide formed micro and nano structues, so called tetrapods (illustration # 4). These interweave and construct a stable entity of particles that form the porous pill. In that way, the tetrapods produce the network that is the basis for Aerographite.

In a next step, the pill is positioned into the reactor for chemical vapour deposition at TUHH and heated up to 760 degrees Celsius. "In a streaming gas atmosphere that is enriched with carbon, the zinc oxide is being equipped with a graphite coating of only a few atomic layers. This forms the tanged-web structures of the Aerographite. Simultaneously, hydrogen is introduced. It reacts with the oxygen in the zinc oxide and results in the emission of steam and zinc gas", continues Schulte. The remains are the characteristic interwoven, tube-like carbon structure. TUHH-scientist Mecklenburg: "The faster we get the zinc out, the more porous the tube's walls get and the lighter is the material. There is considerable scope." Schuchard adds: "The great thing is that we are able to affect the characteristics of the Aerographite; the template form and the separation process are constantly being adjusted in Kiel and Hamburg."

The application

Due to its unique material characteristics, Aerographite could fit onto the electrodes of Li-ion batteries. In that case, only a minimal amount of battery electrolyte would be necessary, which then would lead to an important reduction in the battery's weight. This purpose was sketched by the authors in a recently published article. Areas of application for these small batteries might be electronic cars or e-bikes. Thus, the material contributes to the development of green means of transportation.

According to the scientists, further areas of application could be the electrical conductivity of synthetic materials. Non-conductive plastic could be transformed, without causing it to gain weight. Statics, which occur to most people daily, could hence be avoided.

The number of further possible areas of application for the lightest material in the world is limitless. After officially acknowledging Aerographite, scientists of various research areas were bursting with ideas. One possibility might be the use in electronics for aviation and satellites because they have to endure high amounts of vibration. Also, the material might be a promising aid in water purification. It might act as an adsorbent for persistent water pollutants for it could oxidise or decompose and remove these. Here, scientists would benefit from Aerographite's advantages namely mechanical stability, electronic conductivity and a large surface. Another possibility might be the purification of ambient air for incubators or ventilation.

####

For more information, please click here

Contacts:
Kiel University
Press Services
Claudia Eulitz
phone: 0431/880 7110


TU Hamburg-Harburg
Press Services
Jutta Katharina Werner
Telefon: +49 40 428784321

Copyright © Kiel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication: „Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance"; DOI: 10.1002/adma.201200491:

Video: Aerographite can be compressed up to 95 percent and be pulled back to its original form. In contrast to other materials, it thereby just becomes stiffer (Diameter nine millimetres).

Video: The very small masses of the Aerographite allow quick changes of direction. It raises itself in an erect position, jumps onto the plastic pole and back onto the table: In that way Aerographite gets electric charge from the pole and emits it to the table.

Related News Press

News and information

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Discoveries

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Materials/Metamaterials

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Water

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Nanocomposite Membranes Used in Iran for Water Desalination, Sweetening February 16th, 2015

Aerospace/Space

Launch of the Alliance for Space Development March 1st, 2015

National Space Society and Space Frontier Foundation announce the formation of the Alliance for Space Development February 25th, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE