Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Copper-nickel nanowires could be perfect fit for printable electronics

Abstract:
While the Statue of Liberty and old pennies may continue to turn green, printed electronics and media screens made of copper nanowires will always keep their original color.

Copper-nickel nanowires could be perfect fit for printable electronics

Durham, NC | Posted on May 29th, 2012

Duke University chemists created a new set of flexible, electrically conductive nanowires from thin strands of copper atoms mixed with nickel. The copper-nickel nanowires, in the form of a film, conduct electricity even under conditions that break down the transfer of electrons in plain silver and copper nanowires, a new study shows.

Because films made with copper-nickel nanowires are stable and are relatively inexpensive to create, they are an attractive option to use in printed electronics, products like electronic paper, smart packaging and interactive clothing, said Benjamin Wiley, an assistant professor of chemistry at Duke. His team describes the new nanowires in a NanoLetters paper published online May 29.

The new copper-nickel nanowires are the latest nanomaterial Wiley's lab has developed as a possible low-cost alternative to indium tin oxide, or ITO. This material is coated on glass to form the transparent conductive layer in the display screens of cell phones, e-readers and iPads.

Indium, at $600 - $800 per kilogram, is an expensive rare-earth element. Most of it is mined and exported from China, which is reducing exports, causing indium's price to increase. Indium tin oxide is deposited as a vapor in a relatively slow, expensive coating process, adding to its cost. And the film is brittle, which is a major reason the signature pads at grocery store checkout lines eventually fail and why there is not yet a flexible, rollable iPad.

Last year, Wiley's lab created copper nanowire films that can be deposited from a liquid in a fast, inexpensive coating process. These conductive films are much more flexible than the current ITO film. Copper is also one-thousand times more abundant and one-hundred times cheaper than indium. One problem with copper nanowire films, however, is that they have an orange tint that would not be desirable in a display screen. The copper-based films also oxidize gradually when exposed to air, suffering from the same chemical reaction that turns the Statue of Liberty or an old penny green, Wiley said.

Nickels, however, rarely turn green. Inspired by the U.S. five-cent piece, Wiley wondered if he could prevent oxidation of the copper nanowires by adding nickel. He and his graduate student, Aaron Rathmell, developed a method of mixing nickel into the copper nanowires by heating them in a nickel salt solution.

"Within a few minutes, the nanowires become much more grey in color," Wiley said.

Rathmell and Wiley then baked the new nanowires at various temperatures to test how long they conducted electricity and resisted oxidation. The tests show that the copper-nickel nanowire films would have to sit in air at room temperature for 400 years before losing 50 percent of their electrical conductivity. Silver nanowires would lose half of their conductivity in 36 months under the same conditions. Plain copper nanowires would last only 3 months.

While the copper-nickel nanowires stack up against silver and copper alone, they aren't going to replace indium-tin-oxide in flat-panel displays any time soon, Wiley said, explaining that, for films with similar transparency, copper-nickel nanowire films cannot yet conduct the same amount of electricity as ITO. "Instead, we're currently focusing on applications where ITO can't go, like printed electronics," he said.

The greater stability of copper-nickel nanowires makes them a better alternative to both copper and silver for applications that require a stable level of electrical conductivity for more than a few years, which is important for certain printed electronics applications, Wiley said.

He explained that printed electronics combine conductive or electronically active inks with the printing processes that make magazines, consumer packaging and clothing designs. The low cost and high speed of these printing processes make them attractive for the production of solar cells, LEDs, plastic packaging and clothing.

A Durham, NC startup company, NanoForge Corp., which Wiley co-founded has begun manufacturing copper-nickel nanowires to test in these and other potential applications.

Citation:

"Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks'" Rathmell, A. R., Nguyen, M., Chi, M. and Wiley, B. J. NanoLetters, May 29, 2012. DOI: 10.1021/nl301168r

####

For more information, please click here

Contacts:
Ashley Yeager

919-681-8057

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Flexible Electronics

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Memory for future wearable electronics: Stretchable, flexible, reliable memory device inspired by the brain September 7th, 2016

Display technology/LEDs/SS Lighting/OLEDs

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

Silicon nanoparticles instead of expensive semiconductors: Within an international collaboration, physicists of the Moscow State University replace expensive semiconductors with affordable silicon nanoparticles for display production September 9th, 2016

Low-cost and defect-free graphene: FAU researchers make key break-through September 7th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Textiles/Clothing

Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

Solar/Photovoltaic

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic