Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 'Metamaterials,' quantum dots show promise for new technologies

This graphic depicts a new "nanostructured metamaterial" - layers of silver and titanium oxide and tiny components called quantum dots - to dramatically change the properties of light. Researchers are working to perfect the metamaterials, which might be capable of ultra-efficient transmission of light, with potential applications including advanced solar cells and quantum computing. Findings and this image appeared in the journal Science in April. (Image courtesy of CUNY)
This graphic depicts a new "nanostructured metamaterial" - layers of silver and titanium oxide and tiny components called quantum dots - to dramatically change the properties of light. Researchers are working to perfect the metamaterials, which might be capable of ultra-efficient transmission of light, with potential applications including advanced solar cells and quantum computing. Findings and this image appeared in the journal Science in April.

(Image courtesy of CUNY)

Abstract:
Topological Transitions in Metamaterials

Harish N S Krishnamoorthy,1,2* Zubin Jacob,3* Evgenii Narimanov,4 Ilona Kretzschmar,5 Vinod M. Menon1,2†

1Department of Physics, Queens College, City University of New York (CUNY)

2Department of Physics, Graduate Center, CUNY

3Department of Electrical and Computer Engineering, University of Alberta,

4Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University

Light-matter interactions can be controlled by manipulating the photonic environment. We uncovered an optical topological transition in strongly anisotropic metamaterials that results in a dramatic increase in the photon density of states—an effect that can be used to engineer this interaction. We describe a transition in the topology of the iso-frequency surface from a closed ellipsoid to an open hyperboloid by use of artificially nanostructured metamaterials. We show that this topological transition manifests itself in increased rates of spontaneous emission of emitters positioned near the metamaterial. Altering the topology of the iso-frequency surface by using metamaterials provides a fundamentally new route to manipulating light-matter interactions.

'Metamaterials,' quantum dots show promise for new technologies

West Lafayette, IN | Posted on May 24th, 2012

Researchers are edging toward the creation of new optical technologies using "nanostructured metamaterials" capable of ultra-efficient transmission of light, with potential applications including advanced solar cells and quantum computing.

The metamaterial - layers of silver and titanium oxide and tiny components called quantum dots - dramatically changes the properties of light. The light becomes "hyperbolic," which increases the output of light from the quantum dots.

Such materials could find applications in solar cells, light emitting diodes and quantum information processing far more powerful than today's computers.

"Altering the topology of the surface by using metamaterials provides a fundamentally new route to manipulating light," said Evgenii Narimanov, a Purdue University associate professor of electrical and computer engineering.

Findings were detailed in a research paper published April 13 in the journal Science.

Such metamaterials could make it possible to use single photons - the tiny particles that make up light - for switching and routing in future computers. While using photons would dramatically speed up computers and telecommunications, conventional photonic devices cannot be miniaturized because the wavelength of light is too large to fit in tiny components needed for integrated circuits.

"For example, the wavelength used for telecommunications is 1.55 microns, which is about 1,000 times too large for today's microelectronics," Narimanov said.

Nanostructured metamaterials, however, could make it possible to reduce the size of photons and the wavelength of light, allowing the creation of new types of nanophotonic devices, he said.

The work was a collaboration of researchers from Queens and City Colleges of City University of New York (CUNY), Purdue University, and University of Alberta. The experimental study was led by the CUNY team, while the theoretical work was carried out at Purdue and Alberta.

The Science paper is authored by CUNY researchers Harish N.S. Krishnamoorthy, Vinod M. Menon and Ilona Kretzschmar; University of Alberta researcher Zubin Jacob; and Narimanov. Zubin is a former Purdue doctoral student who worked with Narimanov.

The approach could help researchers develop "quantum information systems" far more powerful than today's computers. Such quantum computers would take advantage of a phenomenon described by quantum theory called "entanglement." Instead of only the states of one and zero, there are many possible "entangled quantum states" in between.

The research has been funded by the National Science Foundation and the U.S. Army Research Office.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Source:
Evgenii Narimanov
765-494-1622

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Display technology/LEDs/SS Lighting/OLEDs

LEDs made from ‘wonder material’ perovskite: Colourful LEDs made from a material known as perovskite could lead to LED displays which are both cheaper and easier to manufacture in future August 5th, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Quantum Computing

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamonds are a Quantum Computer’s Best Friend: A new kind of quantum computer is being proposed by scientists from the TU Wien (Vienna) and Japan (National Institute of Informatics and NTT Basic Research Labs) August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Optical Computing

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

New NIST metamaterial gives light a one-way ticket July 2nd, 2014

Don't blink! NIST studies why quantum dots suffer from 'fluorescence intermittency' May 22nd, 2014

Discoveries

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Materials/Metamaterials

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Announcements

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Military

New material could enhance fast and accurate DNA sequencing August 13th, 2014

On the frontiers of cyborg science August 10th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Energy

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Used-cigarette butts offer energy storage solution August 5th, 2014

Quantum Dots/Rods

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

NANOPARTICLES INDIA August 8th, 2014

Researchers create quantum dots with single-atom precision June 30th, 2014

New Los Alamos Approach May Be Key to Quantum Dot Solar Cells With Real Gains in Efficiency: Nanoengineering Boosts Carrier Multiplication in Quantum Dots June 19th, 2014

Photonics/Optics/Lasers

Ultra-short pulse lasers & Positioning August 21st, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Research partnerships

Сalculations with Nanoscale Smart Particles August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Solar/Photovoltaic

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Material Allows for Ultra-Thin Solar Cells August 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE