Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Osaka University Purchases a DPN 5000 from NanoInk: Prestigious research center plans to use the DPN 5000 System to develop and fabricate plasmonic and nanophotonic devices

Abstract:
NanoInk's NanoFabrication Systems Division is pleased to announce that Osaka University's Photonics Advanced Research Center in Osaka, Japan, has recently purchased and installed a DPN 5000 System - a dedicated, versatile instrument capable of patterning a variety of materials with nanoscale accuracy and precision. Osaka University scientists will harness the power of the DPN 5000 System to develop and fabricate nanoscale plasmonic and nanophotonics devices.

Osaka University Purchases a DPN 5000 from NanoInk: Prestigious research center plans to use the DPN 5000 System to develop and fabricate plasmonic and nanophotonic devices

Chicago, IL | Posted on April 4th, 2012

The Photonics Advanced Research Center at Osaka University conducts a broad spectrum of research in the field of photonics and on the applications of using light-based science to create new phenomena; they have a particular emphasis on studying the interaction of photons with nanomaterials. In an effort to develop photonics technology for industrial use, the Photonics Advanced Research Center also maintains collaborative research relationships with a number of leading technology companies.

"We chose NanoInk's DPN 5000 System because it is an ideal instrument for nanopatterning a variety of materials under environmentally-friendly conditions," said Dr. Nobuyuki Takeyasu, Associate Professor in the Photonics Advanced Research Center. "The DPN 5000 System is an extremely user- friendly device, so we expect that our researchers will be able to create nanoscale plasmonic and nanophotonics devices in very short order."

The DPN 5000 System is a full-featured tip-based lithography platform capable of multi-component deposition of a wide range of materials in sub-micron sized features. Its intuitive user interface enables the deposition of complex nanopatterns by precisely controlling tip movements during the writing process. Combining NanoInk's proprietary MEMs devices and patterning protocols with a multitude of printing materials and substrates, DPN 5000 System users can easily design, create, and analyze nano and microstructures.

"We are delighted that the Photonics Advanced Research Center at Osaka University selected our DPN 5000 System. With the NanoInk platform's biocompatible deposition process and rapid prototyping capabilities, Dr. Takeyasu and his colleagues will be able to quickly and easily create nanoscale plasmonic and nanophotonics devices," said Oliver Yeh, General Manager of NanoInk's NanoFabrication Systems Division, Asia-Pacific region. "Using the DPN 5000 System, pattern design and product fabrication are highly scalable and can be completed in less than an hour."

More information on the Photonics Advanced Research Center at Osaka University in Japan is available at: www.parcjp.org.

NanoInk's NanoFabrication Systems Division brings sophisticated nanofabrication to the laboratory
desktop in an easy to use and affordable setting. More information is available at:
www.nanoink.net/divisions.html#NanoFabrication.

####

About NanoInk
NanoInk, Inc. is an emerging growth technology company specializing in nanometer-scale manufacturing and applications development for the life sciences, engineering, pharmaceutical, and education industries. Using Dip Pen Nanolithography® (DPN®), a patented and proprietary nanofabrication technology, scientists are enabled to rapidly and easily create micro-and nanoscale structures from a variety of materials on a range of substrates. This low cost, easy to use and scalable technique brings sophisticated nanofabrication to the laboratory desktop. Headquartered in the Illinois Science + Technology Park, north of Chicago, NanoInk currently has several divisions including the NanoFabrication Systems Division, the Nano BioDiscovery Division, the NanoProfessorTM Division and the NanoGuardianTM Division.

NanoInk, the NanoInk logo, Dip Pen Nanolithography, DPN, and NanoProfessor are registered trademarks of NanoInk, Inc.

For more information, please click here

Contacts:
Joshua Taustein
Dresner Corporate Services
(312)780-7219


David Gutierrez
Dresner Corporate Services
(312)780-7204

Copyright © NanoInk, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

New-Contracts/Sales/Customers

Cetim Facility Receives Bruker Contour CMM Dimensional Analysis System: New Optical Coordinate Measurement Technology Enables High-Precision 3D Scanning November 16th, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Leti Provides New Low-noise Image Technology to French SME PYXALIS; Will Be Demonstrated at Vision 2016 in Stuttgart November 3rd, 2016

DryWired's Liquid Nanotint to be the first nano-insulation in a Federal building: 250,000 federal buildings, most with uninsulated glass October 12th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project